
AD-A124 919 THE PERFORMANCE MEASUREMENT OF A RELATIONAL DATABASE 1/2
SYSTEM USING MONITOR..(U) AIR FORCE INST OF TECH
WRIGHT-PATERSON AFB OH SCHOOL OF ENGI.. G L SNYDER

UNCLASSIFIED 15 DEC 82 AFIT/GCS/EE/233 F/G 912 .NIL

Emmmmhmmmmmm
IIIIIEIIIIEEI
EIIIIIIIIEIIEE

1.0

1.1.

$ MICROCOPY RESOLUTION TEST CHART

NATION4AL BUREAU OF STANDARDS- 1963-A

3b®r

AFIT/GCS/EE/82-33

Aossolen For

stis am*&
Ioun.ed 0
Justifioation

Distribution/ Of
Availability Codes *&Dfo'

jkvail and/or
lot Special

THE PERFORMANCE MEASUREMENT OF A

RELATIONAL DATABASE SYSTEM USING

MONITORING AND MODELING TECHNIQUES

THESIS

AFIT/GCS/EE/82 Gary L. Snyder
Capt USAF

Approved for public release; distribution unlimited.

..... ..

AFIT/GCS/EE/82D-33

THE PERFORMANCE MEASUREMENT OF A RELATIONAL DATABASE SYSTEM

USING MONITORING AND MODELING TECHNIQUES

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University (ATC)

In Partial Fulfillment of the

Requirements of the Degree of

Master of Science

by

Gary L. Snyder

Capt USAF

Graduate Information Systems

15 December 1982

K!

PREFACE

Relational databases are steadily moving toward the

forefront of the management information arena. These

databases carry with them many advantages over their

existing predecessors, but one criticism seems to be

continually associated with them - the excessive amount of

time required to perform data retrieval.

Studies have been conducted to attempt to decrease

the amount of time required by a relational database to

perform a given retrieval. One of the more notable ones was

undertaken by Dr. John Miles Smith while a faculty member

at the University of Utah. Smith proposed several

optimization techniques which, when applied to an existing

parse tree of relational algebra operators, would

theoretically decrease the amount of time required to

perform the original query.

Shortly after these techniques were published, an Air

Force Institute of Technology student, Lt. Mark Roth,

began the development of a microprocessor-based pedagogical

relational database, centering much of his effort on

incorporating the Smith optimization techniques within his

system design. This course of action was noteworthy,

because while the optimization methods seemed productive,

they had never actually been implemented in an operational

database.

ii

Dr. Thomas Hartrumv faculty member of the

Electrical Engineering Department, suggested that

the design and implementation of a software monitor which

would analyze the effectiveness of these optimization

techniques be undertaken as a master's degree thesis topic.

I accepted this challenger fully intending to complete the

monitor and provide conclusive and informative results.

However, due to the status of the actual implementation of

the Roth database and insurmountable storage limitations

encountered, experimental results were not obtainable.

Instead, it was agreed that the monitor would be designed,

coded, and tested, and that modeling the system using a

high order simulation language would be explored as an

alternative means of analysis.

This thesis effort has provided an exceptional

learning opportunity for me. I have gained great insight

into the fields of relational databases, microprocessors,

and relational algebra query optimization techniques alike.

Sincere gratitude goes forth to my advisor, Dr. Hartrum, as

well as to my committee members, Dr. Henry Potoczny of the

AFIT Mathematics Department and Major Michael Varrieur of

the Engineering Department. Thanks also must be given to

the AFIT/ENE technicians, especially Mr. Dan Zambon, for

keeping the LSI-11 systems operational. Finally, deepest

appreciation goes to my wife Linda and to my two

children Chris and Kelly for their undying support.

4 CONTENTS

PREFACE ii

LIST OF FIGURES. vi

ABSTRACT vii

I. INTRODUCTION 1

BACKGROUND.................... 1
STATEMENT OF PROBLEM 8
GENERAL APPROACH 8
SCOPE.......................10
SEQUENCE OF PRESENTATION. 11

II. OVERVIEW OF THE ROTH OPTIMIZATION LOGIC 13

BACKGROUND 13
OPTIMIZATION MODULES. 16
SUMMARY......................22

III. RELATIONAL DBMS PERFORMANCE ANALYSIS: REQUIREMENTS 214

OVERVIEW 24
PERFORMANCE MEASUREMENT. 26
MONITORING VS MODELING. 36
SUMMARY. 39

IV. PERFORMANCE MONITOR. 40

SYSTEM OVERVIEW 40
EXTERNAL SUBROUTINE. 42
CALLING THE MONITOR. 49
HOST-SUBROUTINE INTERFACE 51
PROCESSING THE MONITOR RESULTS 54
MONITOR OVERHEAD....... 56
DATA REDUCTION AND VERIFICATION 60

V. MODELING THE ROTH OPTIMIZATION LOGIC 65

BACKGROUND65

PURPOSE OF THE ROTH*MODEL......... 69
SYSTEM BOUNDARIES. 70
LEVELS OF MODELING DETAIL.... 70

LEVEL I 71
LEVEL II73ISYSTEM PERFORMANCE MEASURES 77

DEFINE ALTERNATIVES, EXPERIMENT, AND IMPLEMENT 78
jSUMMARY 79

~wi iv

M- -.---

soft"---- ..

VI. CONCLUSION 80

SUMMARY 80~~RECOMMENDATIONS[. 84

FINAL COMMENT....... 85

BIBLIOGRAPHY 86

APPENDIX A : ROTH OPTIMIZATION LOGIC MODEL -
SLAM NETWORK DIAGRAMS 88

APPENDIX B : BENCHMARK QUERIES 102

OVERVIEW 102
QUERIES 102

APPENDIX C : CONSTRUCTING THE MONITOR SYSTEM 107

OVERVIEW. 107
COMPILATION 107
LIBRARIAN. 108
BUILDING THE SYSTEM
LINKER 114

APPENDIX D : DATA REDUCTION PROGRAM - PROGRAM ANALYZE,. 119

APPENDIX E PUBLISHABLE APPENDIX 122

I

List of Figures

1. Roth Relational Database Design 16
2. Roth Optimization Modules 17
3. Squiral Optimization Modules. 18
4. Perfomance Measurement Level I. 31
5. Performance Measurement Level II 33
6. External Subroutine*4
7. Calling the Monitor. 50
8. Unit Common 52
9. Procedure PRINTMON. 55
10. Calling PRINTMON 57
11. Monitor Results 57
12. Monitor Overhead 59
13. The Modeling Process 67

*14. Level I Overview. 72

vi

ABSTRACT

An investigation was conducted to provide a

productive means of measuring the effectiveness of a

collection of untested relational algebra query

optimization techniques which are integrated within an

existing microprocessor-resident relational database.

As a result of this research, two methods of

performance measurement were proposed. A software monitor

was designed, coded, and tested specifically to determine

if the employed optimization methods actually decrease the

amount of processing time required to execute a given

query. Additionally, a baseline simulation model was

designed and presented as an alternative means of analyzing

the performance of this optimization logic.

vii

,,- .ia'::

II

THE PERFORMANCE MEASUREMENT OF A RELATIONAL DATABASE SYSTEM

USING MONITORING AND MODELING TECHNIQUES

I INTRODUCTION

BACKGROUND

The computerized Management Information System (MIS)

has evolved into an integral part of contemporary life;

its effect on society as we know it is simply astounding.

Nearly everyone is touched in one way or another by

- automated data management systems..
Until recently, a typical database was one of two

types: either a "hierarchical" database or a "network"

database, each drawing its name from the information

structures and the means of data management employed. Then,

in the late 1960's, E. F. Codd began working with a

relatively new form of mathematics called "relational

mathematics", consisting of "relational algebra" and

"relational calculus". Relational mathematics permitted

transactions on interrelated data by introducing a unique

group of relational operators which could be used to

manipulate these sets of information.

In the mid-1970's, a third type of computerized

Sdatabase was subsequently developed based on the

databse baed th

principles of relational mathematics, appropriately called

the "relational database". Relational databases

characteristically provide more simplicity, data

independence, and human-friendliness than hierarchical or

network databases. For these reasons, relational databases

are often heralded as the "information systems of the

future".

Although the relational database offers several

advantages over hierarchical and network models, the

management information community has expressed disapproval

over one of its traits: current implementations of

relational databases using existing architectures are slow

and inefficient. Because data retrieval and manipulation

is, after all, the underlying function of an information

system, the speed and efficiency with which this iata is

managed is of utmost concern; thus the criticism of

inefficiency levied on the relational database is a notable

one,

In 1979, an Air Force Institute of Technology

graduate student named Lt. Mark Roth set out to design,

code, and implement a pedagogical relational database on a

microcomputer system in the AFIT Digital Engineering

Laboratory. Roth placed great emphasis on maxirizing the

data handling efficiency of his manipulation language;

accordingly, he decided to incorporate two techniques in an

attempt to improve data management performance. The first

technique was inspired by a paper written by Theo Haerder

2.

Sr

(Ref. 4). Haerder suggests combining a link structure which

relates tuples of one relation to tuples of another to

provide efficient retrieval with an image structure which

gives ordering and associative access by attributes to

provide efficient updates. Roth went on to discover that an

image can be implemented and maintained through the use of

a multipaged index structure containing pointers to the

relation tuples. Furthermore, the pages of one of these

indexes could be organized into a balanced structure using

the concept of B*-trees (pronounced B-star).

The second technique Roth embodied in his database,

and the one directly addressed by this thesis, may be

described as an "automatic query optimizer interface",

which logically resides between a user's set of relational

algebra query commands and the data residing in the system.

This interface, inspired by an article written by Dr. John

Miles Smith and Philip Yen-Tang Chang in the 1975

Communications of the ACM (Ref. IL, hereafter referred to

as the Smith & Chang article), takes any set of relational

algebra commands entered by a database user, and optimizes

them, such that no matter how inefficiently the original

commands were constructed, they would be executed using the

least amount of processing time possible. Consequently, it

was hoped, even the most inexperienced database user would

see results in the minimum required time.

Because of time constraints, much of the logic

responsible for query optimization in the Roth database is

3

not yet operational. In addition, correspondence with Dr.

John Miles Smith, the author of the paper upon which

Roth's optimization techniques were based, ;Yidicates that

these methods were only attempted in one other Data Base

Management System, and that project was subsequently

abandoned. Consequently, it appears, this specific effort

at improving the underlying problem of relational database

inefficiency is still largely conceptual.

Due to the untested nature of these optimization

ideas, a fundamental question immediately arises. I is

not known if these optimization techniques really

optimize. It is conceivable that more overhead is required

to optimize than would have been required to execute

certain types of initial command files; i.e., obvious

situations may exist (characterized by specific command

file size, operator type mix, relation sizes, number of

relations involved, etc.) for which the execution of

optimization logic is counterproductive. Because of the

interest currently placed on relational databases,I attempts at improving execution speed will become

increasingly important. Query optimization at the

conceptual level is a strong contender as a primary means

of achieving this improvement; thus answers to the

questions raised against the Roth database could prove

beneficial to database designers for years to come.

As the Roth database system approaches completion,

there are two apparent means of determining how

4

successfully it is performing; i.e., determining whether

* the optimization techniques are of merit and whether there

are any other possible areas of inefficiency which could be

improved. One method of evaluation would be to model the

execution of the Data Manipulation Language. By using a

system modeling technique, one could represent the Roth

optimization logic as an operational data manipulation

system. Various parametric changes could subsequently point

out the effect that different structures, e.g., command

file size, operator mix, etc., have on overall execution

time. By employing existing simulation language

capabilities, the time duration of key PASCAL procedures

could be modeled as functions of critical Roth database

characteristics.

A system model can either be a simulation model or an

analytic model. A simulation model reproduces the behavior

of the system, in turn establishing a correspondence

between the model and the system itself. Simulation models

are characterized by states, or the values of given system

parameters at a specified time, t, and transitions, the

variations of parameter values from state to state. These

state transitions are commonly referred to as events, and a

system which evolves from predominantly discontinuous

events is called a discrete event system. While a system

can be simulated using any computer language, including

PASCAL, numerous simulation languages specifically designed

to model system events currently exist, such as SLAM,

5

SLAMII, QGERT, and SCERT. SLAMII, developed by Pritsker and

Associates (Ref. 13) and supported by AFIT resources,

provides an excellent capability for modeling the Roth

optimization logic.

In addition to simulation models, a system may be

represented as a series of mathematical equations. Such a

model is called an analytic model. An analytic model may be

one of two types, depending on the characteristics of its

parameters. If all system variables are predetermined, the

model is deterministic; if at least one system variable is

random, the model is probabilistic. Probabalistic models

are commonly either queueing models, in which a system is

represented as queues and activities fed by these queues,

or Markov models, which specifies statistical relationships

between states in the form of a transition-probability

matrix. Analytic techniques are sometimes combined with

simulation methods to provide a hybrid model.

In addition to modeling, a second means of

determining how efficiently the Roth database is performing

involves physical monitoring which actually measures

execution times. Transactions may be measured by using one

of three types of measurement tools: hardware tools,

software tools, or firmware tools. In addition, a system

may be monitored by using a combination of hardware and

software called a hybrid tool (Ref. 2, p. 31). A hardware

monitor detects transactions by detecting pulse changes or

bit patterns at the machine level. A firmware monitor, on

6

the other hand, relies on microcode added to the system

firmware todetect specific branch conditions, use of

predtermnedopcodes, etc.

Unlike the hardware or firmware monitors, the

software monitor consists of additional logic integrated

into existing operating system or applications routines

which detects transactions as they occur. Incorporation of

a software monitor within the Roth optimization logic

would assist a user in identifying logical deficiencies

which may seriously hamper data manipulation efficiency. A

software monitor would provide a means of determining the

amount of time required to optimize queries, as well as

the amount of time needed to execute a command file. Once

the monitor is installed, experimentation with various

types of queries could provide valuable information

indicating what kinds of queries are enhanced by

optimization logic, and what kinds are not. Additionally,

the monitor could be extended to other areas of the

database logic in order to disclose additional user-

required information which would depict candidate erroneous

or inefficient code.

Lite. -ure review indicates that few relational

information systems contain the facilities to collect

performance data; however, in the mid-1970's two employees

of the General Motors Corporation , N. Oliver and J.

Joyce, implemented a software performance monitor in their

REGIS relational database (Ref. 12). Oliver and Joyce

7

F Point out that the function of the monitor was to collect
data pertaining to the usefulness of the command language,

monitor performance improvements following system

enhancements, and make performance predictions based on

past runs. They employed existing modules within the

package to gather and store data, producing standard output

tables which contained their results. Oliver and Joyce

contend that REGIS users gained nearly an order of

magnitude improvement as a result of correcting some of the

problems discovered by using the performance monitor.

STATEMENT OF PROBLEM

The purpose of thisc thesis is to survey computer

performance techniques applicable to database management

systems and to develop and implement practical methods which

will permit the and~.ysis of the performance efficiency of

the Roth Relational Database optimization modules. The

Roth database DML is written in PASCAL, and the database

itself currently resides on the LSI-11 microcomputer

system located in the Air Force Institute of Technology

Digital Laboratory. The performance analysis specifically

focuses on the merit and applicability of the query

optimization techniques of the Roth logic.

GENERAL APPROACH

The first step of this effort consisted of an

extensive literature review which focused on three areas.

The first was information on existing database performance

monitors, specifically any implemented on relational

databases. The second area of literary interest was an in-

depth study of the Roth thesis and a thorough examination

of the Smith & Chang paper upon which the Roth

optimization techniques were based. The third area of

research centered around a study of the SLAMII simulation

language developed by Pritsger and Pegden, subsequently

used to model the Roth database logic.

Realizing that performance evaluation was the

underlying goal of the project, the next step was to

determine how to make the evaluation. The development of a

performance monitor seemed to be a viable means of system

evaluation. A significant drawback of this method,

however, was the fact that the Roth logic was not yet and

may not soon be totally operational. In addition, severe

system resource limitations were causing operational

difficulties. As a result, the design and coding of a

,,monitor seemed practical within the timeframe allowed to

complete this thesis; total implementation, howevever, was

doubtful. Consequently, a second means of evaluation, which

would not require that the Roth database be fully

operational, appeared to be worth investigating; i.e.,

model the Roth manipulation language in order to make

performance predictions based on variable system

parameters. It was further determined that the most

effective means of modeling the system would be a

I
simulation model, since a simulation allows system behavior

observation over time, under stimuli generated to represent

system inputs, yielding numerical results which may be used

in system analysis. In addition, SLAMII was chosen as the

simulation language representing the system because of its

discrete event/network capabilities, its user-function

capabilities which would permit execution durations to be

easily represented as functions of system parameters, and

the availability of SLAMII support at AFIT.

SCOPE

The development of a completely detailed modeling

network which would successfully evaluate system

performance would be a highly formidable task. Similarly,

the design, coding, and implementation of a software

performance monitor which could be integrated with the

existing Roth database manipulation language, would also

be a considerable assignment within the tinre constraints

allowed for this thesis effort. As a result, the goal of

this thesis is to completely design and code the software

performance monitor and implement the design as much as

possible depending on the operational status of the

database itself at the time the monitor is ready to be

incorporated. In addition, a baseline model of the Roth

query optimization logic which will address the structure

and parameters required to experimentally simulate the

Roth logic will be designed and discussed in detail.

10

SEQUENCE OF PRESENTATION

The remainder of this thesis consists of six

chapters. Chapter II is an overview and analysis of the

Roth database, primarily focusing on the optimization

techniques utilized to attempt to minimize the time

required to perform user queries. Chapter II also

summarizes the techniques discussed in the Smith & Chang

paper, and addresses the similarities and differences

between the two works. It also briefly reviews the

optimization techniques used to represent tuple index pages

as nodes of B*-trees.

Chapter III is a requirements description chapter

which addresses those criteria which must be evaluated. It

primarily depicts the relative advantages of monitoring

vs. modeling, and what information needs to be captured

from the Roth database logic in order to provide an

effective performance evaluation.

The goals and design of the actual performance

monitor are presented in Chapter IV. The overall purpose

and general approach toward accomplishing the software

monitor objectives are expounded upon.

In contrast, Chapter V describes the methodology

behind modeling the optimization logic of the Roth DML. An

overview of simulation modeling using the SLAMII modeling

language is provided. A baseline SLAMII diagram depicting

the Roth optimization logic is included as Appendix A of

11

the thesis.

Finally, Chapter VI summarizes the thesis effort and

provides recommendations for follow-on tasking.

12

....

II OVERVIEW OF THE ROTH OPTIMIZATION LOGIC

BACKGROUND

The Roth relational database was created to sptisfy

the need for a good pedagogical tool in the relational

database area. Roth initially hoped to have the system

completely operational at. the conclusion of his effort. As

he got further into his work, however, he became aware of

the emphasis which needed to be placed on query efficiency,

both in terms of time and space; as a result, Roth was only

able to create the front end of the system.

The Roth relational database was designed to achieve

as near optimal behavior as possible, while being

implemented as a general purpose system to be used as a

pedagogical tool for teaching database management and

manipulation. The system was designed using a top-down

structured approach, and consists of four basic modules:

SETUP initialization/logon

DDL PROCESSOR domain/relation definition

DML PROCESSOR data manipulation/retrieval

SHUTDOWN definition/relation storage

13

The Roth Database design places great emphasis on

query optimization at the conceptual level, and was

strongly influenced by the Smith & Chang article, which

addressed the design of an automatic interface capable of

optimizing a given set of user relational algebra query

commands. In agreement with the article, Roth makes the

following points concerning query optimization:

1. Relational database systems provide users with

tabular views of data. Consequently, users often create

highly inefficient queries. Roth contends that "the burden

of efficiency, since effectively removed from the user,

must be assumed by the interface to the database".

2. Very significant optimization can be done at

higher levels of interpretation where the global structure

of a query is known.

3. Relational algebra was used to develop the

interface because "a relational algebra treats and

manipulates whole relations as single objects... a

relational algebra may be considered at a higher level of

abstraction than other interface systems, and thus offer

more scope for high level optimization" and "if a

relational algebra is conducive to smart optimization, it

might provide a practical implementation level for other

query languages."

The Roth optimization logic attempts to optimize a

14

given user relational algebra command file in two ways.

First, it builds an operator parse tree in which each node

corresponds to a single operator of the command file.

After the tree is. built, it is physically rearranged to

decrease the time required to perform subsequent

retrievals. Second, the partially optimized command tree

is analyzed in terms of temporary relations which are to

be created. The tuples of these relations are then

preordered to enhance any searching activity required to

actually process the data.

Roth's query optimizer appears in the EXECUTE logic

of the RETRIEVE module, a subset of the DATA MANIPULATION

PROCESSOR(Ref. Figure 1). The optimization code itself is

further divided into four submodules: TREE, SPLITUP,

OPTIMIZE, and RUN. Together, these four modules perform six

basic functions which transform a user command file into an

optimized set of coordinated concurrent tasks. Briefly

stated, these six functions are:

1. Apply transformations to the original packet.

2. Achieve maximum concurrency.
3. Determine interface conventions.

4. Implement each task.

5. Evaluate decision effects.

6. Implement new task generations.

15

EXECUTIVE

SETUP DDL DML SHUTDOWN
PROCESSOR PROCESSOR

EDIT ATTACH RETRIEVE INVENTORY

GET SAVE EDIT EXECUTE DISPLAY
COMMAND COMMAND COMMAND

FILE FILE FILE

TREE SPLITUP OPTIMIZE RUN

Figure 1. Roth Relational Database

System Design

OPTIMIZATION MODULES

The Roth optimization logic begins with TREE and

terminates with RUN. Graphically, the execution is

represented in Figure 2.

16
. 4

II.4 I "..
]

TREE Creates parse tree from command
. file
* Checks for syntax errors

* operator
* tree

SPLITUP Splits operator tree into non-shared
* subtrees
* Orders subtrees; formerly shared
* executed first

* split
* trees -

OPTIMIZE Moves unary operators down tree
* Creates compound restricts from
* boolean trees

* optimized
• tree

RUN Optimizes entire packet
Orders temporary relations
Performs retrieval

Figure 2. Roth Optimization Modules

These modules closely parallel those presented in

the Smith & Chang design (called SQUIRAL) depicted in

Figure 3.

17

SYNTAX Constructs operator parse tree
* Checks for syntax errors

* operator
• tree

TREE Uses transformations to optimize
TRANSFORMER tree

* optimized
* tree

COORDINATING Optimizes tree
OPERATOR Sorts temporary relations
CONSTRUCTOR Creates tasks

. cooperating
* tasks

CONCURRENT Database machine excutes tasks
DATABASE
MACHINE

Figure 3. SQUIRAL Optimization Modules

After TREE examines the user command file and creates

an operator tree, SPLITUP begins dealing directly with

18

- -*~~

optimization; specifically, it serves as a prelude to

'OPTIMIZE by taking a network of shared subtrees created by

TREE, splitting this network into a series of non-shared

subtrees, then chaining these individual trees together,

ordering them from most-used to least-used. The result is a

series of trees, some of which were formerly shared

subtrees, ordered such that an intermediate relation is

created before its results are required by subsequent

subtrees. This results in a formerly shared subtree being

executed only once, and works for shared subtrees which

occurred in different queries as well as the same query.

The OPTIMIZE module, as the name implies, is

responsible for the bulk of the query optimization

performed by the Roth database DML. OPTIMIZE evaluates and

modifies the chain of individual trees output by SPLITUP

using three basic types of correctness preserving tree

transformations. These transformations are performed by the

following three logic modules:

1. COMBOOL. The function of COMBOOL is to convert a

specific type of operator subtree, called a "boolean tree",

into a single operation having a single compound boolean

predicate. Direct boolean tree implementation requires

that a single input relation be read multiple times. The

transformation of a boolean tree into a single operation

permits the same transaction to take place, with the input

relation being read only once.

19

I
2. SELDOWN/PROJDOWN. These two algorithms are

responsible for "pushing" SELECT and PROJECT nodes down

the operator tree. It is especially productive to push

SELECTS as far down the tree as possible, because the

further down the SELECT operator resides, the greater the

number of unused tuples which can be eliminated from the

temporary input relations. It is also advantageous to move

PROJECT operators down the tree, since they decrease the

width of tuples and can lead to the elimination of tuples

from relations. Some consideration must be given to the

location of PROJECT operators, however, because the

implementation of PROJECT operators does not make use of

directories, and pushing a PROJECT past an operator which

can, such as a JOIN, eliminates the capability of using

directory access.

3. SIMSEL. The SIMSEL module is responsible for

transforming a compound boolean predicate on a SELECT

operator into conjunctive normal form, and simplifying the

result.

The final optimizing module of the Roth database is

the RUN module. The RUN module employs an algorithm

implemented by another AFIT student, Lt. Peter Raeth,

called CORC, the Coordinating Operator Constructor (Ref.

18). Once the operator trees have been built(TREE) and

optimized(OPTIMIZE), the nodes must be executed in order to

perform the retrieval operation. The CORC logic considers

20

I

the fact that prior to execution of an operator tree,

execution speed would improve if attention were paid to the

order of tuples within a relation before that relation is

passed up the tree for subsequent processing. Restated,

operators can perform more optimally if the relations upon

which they are acting are presorted on the attributes which

that particular operation is interested in. This tuple

sorting is accomplished by the CORC logic using three

passes through the tree:

1. PASS 1 (up). Domain fields resulting from the node's

operator are attached to the node. The sort

order of base relations is attached to the

applicable nodes.

2. PASS 2 (up). Each node is labelled to indicate what

preferred sort orders (PSO's) are available

from the node below.

3. PASS 3 (down). One of (possibly) many PS0's are chosen

from the node below and compared to the

sort order subsequently required, to

effectively determine the implementation

of that node.

It is obvious that the activity resulting from the

14three CORC passes is based on a series of logical

21

decisions dictating which particular sort order is

preferred and what operator implementation is to be used

for a given situation. These decisions are made based on a

table (Ref. 17, p. 41-42 and Ref. 18, p. 574-575) of UP-

rules and DOWN-rules introduced in the Smith & Chang

article which dictate which domain should be sorted to

enhance subsequent processing as well as what specific type

of implementation each operator should adhere to (Ref. 17,

Appendix C and Ref. 18, p. 577-579).

SUMMARY

The Roth optimization logic strongly resembles the

SQUIRAL design presented in the Smith & Chang article,

although some significant variation is noticeable. SQUIRAL

strictly addresses single queries; i.e., the user

formulates a single query and expects a single relation as

a result. Roth's database not only considers single

queries, but extends these concepts to provide simultaneous

optimization of a set of queries. Roth further contends

that this may be done by the "exploitation of shared

subtrees not only within a single query but also among

different queries, and in the execution order of the

various queries." It was because of this enhancement that

the SPLITUP module was added to the Roth design.

Because of the untested nature of SQUIRAL and the non-

operational status of the Roth data manipulation language,

the merit of the optimization logic is still questionable.

22

It is conceivable that the Roth optimization modules do

not optimize at all, or, more likely, there may be

instances in which the optimizer overhead exceeds the time

and resources required to execute the original command

file. Smith & Chang conclude their article by commenting,

"There is of course time overhead associated with

automatic programming. However, since a complex query over

a large database might take several hours to produce an

answer, the time spent in analyzing a small operator tree

is insignificant." It is reasonable to assume from this

statement that if the optimization techniques work at all,

they are geared toward complex queries, and may not

significantly improve retrieval efficiency for the

majority of applications.

23

I

III RELATIONAL DBMS PERFORMANCE ANALYSIS:

REQUIREMENTS

OVERVIEW

Performance evaluation is essential to all areas of

engineering. Before any new system is marketable, it must

adhere to certain preassigned performance specifications.

In addition, evaluation techniques can often be applied to

existing systems, either to provide decision making

criteria such as whether to purchase the system, or to

indicate existing substandard areas requiring improvement.

Two things are generally considered when determining

system performance. First, a given system must perform its

functions correctly. Second, the system must perforrn its

functions efficiently; it must complete its defined tasks

within user- prescribed time and space restrictions.

Performance analysis is especially concerned with the

second consideration, how efficiently the system carries

out its predetermined tasks.

Assuming the management system correctly manipulates

data, the amount of time and storage space required to do

so become the two critical database management performance

issues. Since the underlying purpose of a database

management system is to store and retrieve data, it

naturally becomes important just how quickly this

24

information can actually be manipulated. Similarly, much

interest exists in adapting management sjstems to

microprocessors, in turn creating a need for more efficient

use of primary and secondary storage capabilities.

As summarized in Chapter II, the Roth DBMS focuses on

execution time optimization by invoking certain relational

algebra query techniques which could be of interest to the

entire relational database community. More and more

emphasis is being placed on decreasing the amnount of time

required to retrieve data from a relational system. The

underlying problem with the optimization concepts Roth

employs is that they are virtually untested. Even assuming

that these methods do not interfere with the correctness of

execution of the retrieval function of the data

manipulation language, it is still questionable how much

retrieval time is saved by using these optimization

principles.

The purpose of this thesis effort is to analyze the

impact of the optimization techniques employed by the Roth

database system upon the overall execution time required to

process a relational algebra query. The following questions

need to be addressed:

1. Do the relational algebra optimization techniques

employed by the Roth data manipulation logic actually

decrease processing time while preserving correctness?

25

2. Assuming these methods do improve execution time

in some instances, are they effective for all cases? Are

there certain system characteristics which could easily be

identified for which the overhead inherent within the

techniques outweighs the advantages of optimizing?

Examples of these parameters are:

Command file size

Command file mix

Number of temporary relations created

Size of relations

3. Assuming that the Roth optimization techniques are

beneficial in some instances but not in others, are there

obvious suggested modifications to the system which could

take advantage of these observations in an attempt to

achieve further optimality?

PERFORMANCE MEASUREMENT

The overall goal of this thesis and any follow- on to

this effort is to evaluate the efficiency of the Roth data

manipulation language by comparing the execution times of

both optimized and non-optimized data manipulation

language. In order to accomplish this task, two things must

be considered. First, an experimental set of benchmark

26

command files must be created which would provide a

representative cross-section of requirements to be placed

ontesystem. The second consideration is determining at

whtpoints to take the measurements in order to reflect

teamount of execution time required to process the

In order to measure the effectiveness of the Roth

optimization techniques, a set of benchmark queries and

test relations must be created designed specifically to

determine whether the optimization modules are satisfying

their objectives. Five benchmark queries have been

developed which test the optimization techniques employed

by the Roth data manipulation language. These queries are

pesented in Appendix B along with a table of relations

constituting a test data base against which these commaiid

files may be run.

In his thesis (Ref. 17, p. 55), Roth points out that

"Previous attempts at optimization have considered only

single expressions. That is the user formulates a single

query and expects a single relation as a result. This

thesis has expanded this viewpoint to include multiple

queries for which the user expects several relations as

the result. Thus the opportunity exists for simultaneous

optimization of a set of queries. These opportunities

occur in two areas: in the exploitation of shared subtrees

4 not only within a query but also among different queries,

and in the execution order of the various queries. These

27

ideas are embodied in the module SPLITUP."

Query 1 has been designed to exercise the SPLITUP

logic. Query 1 actually consists of three command files

which employ shared subtrees while attempting to provide

three unique results. As addressed later in this chapter,

the SPLITUP optimization techniques could be evaluated by

measuring overall system execution time while running this

multiple query with and without executing the SPLITUP

module.

A second optimization technique employed by the Roth

logic (specifically the SELDOWN and PROJDOWN algorithms)

involves moving SELECT and PROJECT operators as far down

the operator tree as feasible in order to eliminate

needless data as early during processing as possible (Ref.

17, p.62). If a query consisted exclusively of SELECT and

PROJECT operators, it would seem unnecessary to execute

the SELDOWN and PROJDOWN algorithms, since SELECT and

PROJECT operators would already be at the bottom of the

tree.

Query 2 is an example of a query which consists

solely of SELECT and PROJECT operators. A good test of the

SELDOWN and PROJDOWN techniques would be to measure the

total system time required to process this command file

with and without executing these two algorithms.

Probably more common than a query which consists

entirely of SELECTS and PROJECTS, is a query which could

also eliminate the need for the SELDOWN and PROJDOWN

28

I]

algorithms by naturally placing SELECT and PROJECT

operators at the beginning of the file, effectively

inserting them at the bottom of the corresponding operator

tree. Query 3 is an example of this type of command file.

Another optimization technique employed by the Roth

database is implemented in the COMBOOL algorithm (Ref. 17,

p. 58). COMBOOL works on the principle that improved

efficiency may be obtained by transforming certain

operator trees, or subsets of operator trees called

"boolean subtrees" which read a given relation from

diskette more than one time, into a single operator which

reads the relation only one time. Query 4 is an example of

a command file which when directly implemented provides an

operator tree identical to the example appearing in the

Roth thesis (Ref. 17, Fig. 12); i.e, the operator tree

corresponding to the existing command file already

contains a boolean subtree. An interesting test of the

COMBOOL optimization technique would therefore be to

measure the execution time of this file using the existing

Roth logic, and then to measure the execution time of the

same query while bypassing the COMBOOL procedure.

Query 5 is designed to analyze the efficiency of the

Roth logic attempting to optimize an already optimal

command file. Within the EXECUTE procedure, which serves

as a driver during the optimization processing, a copy of

the optimized operator tree is printed to the terminal

using the PRINTEE procedure. A valid test of execution

29

• _____________, _______________

time efficiency would be to measure the processing of

Query 5, a highly inefficient command file, from beginning

of execution through completion of the RUN module, and

then, using the PRINTREE output, to measure the same

processing interval using the optimized version of the

query. This test would reveal what consideration is given

to an already optimal command file.

Operationally, the user action required to exercise a

query against the Roth database begins with the DDL

processor, at which time the domain and relation

definitions are created. Once this task has been

accomplished, the DML processor is used to enter the

RETRIEVE module of the logic. The user is required to GET

the command text file which contains the database query,

and EXECUTE it. Upon the completion of the EXECUTE

module, the results of the query are DISPLAYed.

Except for the EXECUTE logic, the efficiency of

processing within the Roth database is dependent upon user

if keyboard interaction; as a result, measuring execution

speed would be inconclusive. In addition, the optimization

techniques reviewed in Chapter II appear within the

EXECUTE module. For these reasons, measurement of the time

required by EXECUTE to process a query is the critical

performance analysis requirement.

The points of performance measurement within the

EXECUTE module may effectively be represented

hierarchically. Figure 4 examines the first level of

30

L

measurement to be taken. Case I, which utilizes the

optimization logic, performs measurements within the

EXECUTE driver, immediately prior to the call to tree and

immediately following the call to RUN. Conversely, case II

CASE 1 CASE II

TREE TREE

SPLITUP . SPLITUP

OPTIMIZE . OPTIMIZE

RUN . CORC (RUN)
* RUN

S- time measurement

Figure 4. Performance Measurement
Level 1

31

shows bypassing the SPLITUP and OPTIMIZE modules along

with the optimization portion of the RUN module, while

t~aking a measurement before the TREE module and after the

execution of the RUN module. By exercising the database

using the benchmark set of queries, it may be determined

for which types of queries the optimization techniques are

productive.

After the overall execution times of the optimized

and non- optimized logic have been analyzed, it would be

interesting to measure the execution times of individual

areas of logic. if, for example, it was determined that

optimization was counter- productive for a query which

contained a large percentage of SELECT operators, the

amount of processing time required within individual

optimization modules could provide insight into overall

system execution. Measurement Level II, depicted in

Figure 5, permits time measurement of individual

optimization modules. Measurements are taken upon

entering TREE, exiting TREE, entering SPLITUP, exiting

SPLITUP, entering OPTIMIZE, exiting OPTIMIZE, enterin~g

RUN, exiting the CORC algorithm of RUN, and exiting the

RUN module itself.

The optimization methods which appear within the

Coordinating operator Constructor of the RUN module

32

TREE

*

SPLITUP

OPTIMIZE

CORC (RUN)

RUN

* - time measurement

Figure 5. Performance measurement
LEVEL II

provide the area of interest addressed by Level III

of the performance measurement hierarchy. As presented in

Chapter II, the CORC logic takes the relational algebra

operator tree and implements each node using a set of basic

procedures such that the sort orders of intermediate

relations are optimally coordinated. At this point in time,

33

the rules applied to coordinate these sort orders are

purely heuristic and untested. Level III offers an

opportunity to experimentally validate the basic procedures

employed by the CORC logic.

The most straightforward means of measuring the

effectiveness of the choice of coordinating procedures

used by RUN is to simply determine the amount of time

required to process RUN while methodically altering the

techniques used to sort the relations and choose various

operator implementations. For instance, using an example

from the Roth thesis (Ref. 17, p73-74), the statement is

made, "The UP-rule for JOIN (R[C=D]S), where one operand

(R) is at a leaf and the other (S) is internal, indicates

that if S is unary and a directory exists for the joining

domain (C) of R then the preferred output sort order is

dR. In this case dR = S and C = S#, and so the output of

JOIN is labeled with {S#)." In this example, dR and C are

equal, but if C had some other value, say P# (part

number) , the fact that the JOIN output would still have

been labeled with {S#} would have been significant. By

measuring the execution time of RUN while changing the

output of JOIN to {P#1 could provide an indication of the

correctness of this particular UP- rule. Similar

experiments should be performed to demonstrate the

validity of the CORC sort order and implementation rules.

Another area of performance within the Roth database

system which requires analysis appears outside of the query

34

optimization logic. Roth proposed a data access structure

to retrieve and modify stored data which was based on a

structure introduced by Theo Haerder (Ref, 4). Haerder's

structure allows immediate information retrieval without

examining unwanted data in the process. It combines the

advantages of pointer chain and multilevel indexing

techniques by using a B*-tree general access structure,

with a B*-tree constructed for each domain.

The initial Roth design called for the addition of a

B*- tree pointer to each domain and having each B*-tree

structure reside in main memory. When the system was non-

operational, all of this information was disk resident,

and when the database was executed, the data was

automatically read into memory and dynamically

constructed using Pascal pointers and data structures.

Unfortunately, this proposal became impractical due to

memory constraints. As a result, the current

implementation stores each B*-tree structure on disk, and

swaps the structures or parts of the structures in and

out of memory as required.

The current access structure implementation raises

two performance questions which must be answered. The

first question was brought out in a follow-on to the Roth

effort written by Lt. James D. Mau (Ref. 8, p. 62). Mau

decided that "Each level of the B*-tree will be limited

to three non-leaf nodes and the height of the B*-tree

will be limitless. The best choice of these parameters is

35

* 7.-.........

a performance tradeoff that will require further study.".

The issue here is to determine which structure will permit

the fastest retrieval while still remaining within primary

memory constraints, a tree with large nodes but few levels

or a tree with small nodes but many levels. A performance

measurement from the time an access is initiated to the

time data is made available would assist in answering this

question.

The second performance question involving data

structures arises when a leaf node becomes full. When a

B*-tree leaf node becomes full, a reorganization of the

tree is required in order to accomodate the next entry to

be placed into that node. in addition, there are several

methods of tree reorganization from which to choose, in

turn raising the question of optimality. Effective use of

performance measurements could once again assist in

dctermining which of these insettion techniq.,ues should be

employed.

MONITORING vs MODELING

In order to evaluate the performance of any kind of

system, pertinent information has to be gathered. To

effectively evaluate the performance of the Roth database

data manipulation language, this performance measurement

data may be collected in one of two ways: from the system

itself (monitoring), or from a model of the actual system

(modeling).

36

.

Performance measurement through the use of a software

monitor provides the capability of actually observing the

times required to execute the optimization modules of the

Roth database. The most straightforward means of

implementing a software monitor is through the insertion

of software probes, providing a trace of those instances a

given subset of logic is entered. There are notable

advantages to monitoring the Roth DML:

1. Accuracy. A monitor measures the performance of

actual code. Since this process is somewhat mechanical,

the evaluator can be confident that the true optimization

process is being analyzed.

2. Easy to interpret. Since monitoring provides the

capability of observing execution, evaluation may be

performed simply by analyzing a trace to determine how

much time was required to perform a given module of code.

In general terms, software monitors are specialized

sets of code which collect information about activities

caused by the execution of particular programis or sets of

programs. Software monitors were probably the first tools

developed to examine the performance of computer logic,

and because they are themselves computer programs, they

appeal to most performance evaluators because of their

37

understandability and ease of use.

In contrast to monitoring the optimization logic, the

development of an experimental simulation model to analyze

the techniques could also provide useful results. The Roth

logic could be modeled in a top-down, modular fashion using

the SLAMII simulation language. The entire execution module

could first be represented as a simple SLAM network at

Level 1, with subsequent levels of networking developed

which could simulate the most detailed PASCAL procedures.

Performance criteria could then be evaluated simply by

making parametric changes to the networks to simulate

command file size, relation size, and other system features

which may influence the behavior of the logic. Advantages

to modeling the system are:

1. Non-operational code can be modeled. Because the

system is being simulated, questions of performance can be

answered even before the manipulation language has been

completed, a strong consideration when viewing the Roth

database.

2. Flexibility. Command files and relations do not

have to be recreated in order to perform experimentationi;

* I rather, system behavior may be observed under varying

conditions simply by making straightforward parametric

changes to the SLAMII network.

38

SUMMARY

The goal of this thesis is to provide two effective

means of evaluating the performance of the Roth database

data manipulation language; or, more specifically, the

efficiency of execution time required to process a

relational algebra query and return the results to the

user. In order to achieve this goal, four specific areas of

performance measurement are recomrnendcd.

Three types of measurement, each directed at

evaluating the effectiveness of the Roth query

optimization logic, are presented in a top-down,

hierarchical fashion, beginning with measuring the overall

system and ending with measuring the validity of the set

of pre-defined rules useci to coordinate sort orders and

implement the actual operations. Conversely, the fourth

type of measurement addressed deals with the optimality of

employing a B*--tree technique to index the stored relations

used by the system.

Two means of measuring the effectiveness of the

database language, monitoring and modeling, provide the

method of evaluation. Monitoring has the advantage of

being easy to interpret and accurate, but modeling is more

flexible and may be used to evaluate non-operational code.

39

IV PERFORMANCE MONITOR

SYSTEM OVERVIEW

The original implementation of the Roth database was

begun on an Intel 8080 system. Due to limited resources,

however, further work on the 8080 became impractical. As a

result, development was continued on the LSI-11/2

microcomputer system manutactured by the Digital

Electronics Corporation (DEC). This 64K-byte sys em

features a 16-bit architecture and has eight general

purpose registers, with registers 6 and 7 reserved as the

system Stack Pointer and Program Counter respectively.

There are currently five LSI-11/2 microcomputers, labeled

Systems A through E, resident in the AFIT Digital

Engineering Laboratory.

The LSI-11/2 supports the UCSD PASCAL operating

system and applications programming language, which Roth

used to implement his relational database definition and

manipulation logic. Furthermore, in order to preclude

potential resource limitation difficulties on the L-I-1I/2,

certain special features of UCSD PASCAL were employed. One

such feature, the segmentation feature, permits the

compilation of large UCSD PASCAL source files by breaking

these files into smaller sectors. The code and data

associated with each of these sectors, called Segment

40

Procedures, reside in memory only while there is an active

invocation of that procedure; i.e., the segments are

physically swapped in and out of an overlay area in memory,

in turn increasing available memory space. Segmentation is

accomplished by separately compiling Units and Segment

Procedures, linking each procedure to the unit it uses, and

then linking all Segment Procedures into one executable

program by using the Librarian utility. The Roth database

code uses a unit called COMMON, which contains all global

variables and structure definitions. A complete explanation

of the UCSD PASCAL capabilities appears in the Mau thesis

(Ref. 8, pp. 9-26).

In order to set up a software monitor to measure

execution times of the optimization modules, three

modifications must be made to the existing Roth system.

First, a procedure must be written to permit the reading of

the KWv11-A real-time clock, in turn indicating the amount

of time required to process a given area of logic. The

KWV11-A is a programmable clock/counter that provides

various means for determining time intervals or counting

events. The clock counter is a 16-bit register which can be

operated in any of four programmable modes. Because the

printed circuit board housing the KwrVll-A is a quad board,

however, the clock can only be used on System A in the

Digital Engineering Lab.

The second modification required to permit systemt

monitoring is the insertion of software "hooks" within the

41

existing PASCAL code to initiate the reading of the KWV-"l1A

clock. Third, logic must be provided to allow proper

communication and interface between the clock reading

procedure and the PASCAL host. This objective is

accomplished by first storing the clock/counter time in a

global PASCAL variable and subsequently placing this value

along with an integer value identifying the source of the

call into an array to be used during data analysis. These

three tasks are developed in detail in the remainder of

this chapter.

EXTERNAL SUBROUTINE

The first consideration in implementing the software

monitor is designing and coding a subroutine external to

the main PASCAL logic which may be called upon to read the

real-tiile clock and store its contents at a location

accessible to the host program. Because UCSD PASCAL does

not have the capability of reading this low-level real-

time clock, the subroutine must be written at the assembly

language level.

As previously mentioned, the real-time clock provided

with the LSI-11/2 system is the KWVll-A. The KWV11-A has

the following features which affect the implementation of

the software monitor:

4 1. 16 bit resolution

2. driven by an external input

42

3. four programmable modes

The clock can generate interrupts to the processor at

given intervals and can run at one of the following five

programmable frequencies: 100Hz, 1kHz, 10kHz, 100kHz, or

1MHz. The clock also includes a Schmitt trigger which

permits clock initiation as well as program interrupt

initiation in response to external events.

The KWVIl-A uses two LSI-11l/2 system registers, the

Control/Status Register (CSR) and the Buffer/Preset

Register (BPR). The CSR allows the processor to control

the operation of the clock as well as monitor its

activities. By using the CSR, the user can enable

interrupts, select a mode of operation, start the counter,

and monitor trigger events. The BPR, on the other hand, is

a 16-bit register that can be loaded from the counter,

thus providing the user the ability to measure processing

time from event to event.

The external assembly language subroutine uses the

LSI-11 instruction repertoire, and is shown in Figure 6.

Because the routine is written in assembly language, it

must be constructed as an external procedure, beginning

with a .PROC statement and ending with a .END. The

objective of the subroutine is to read the value of the

-. 9 clock/counter and place it in the PASCAL global variable

THYME each time the subroutine is called; additionally, if

the time interval between two monitoring events is large

43

.PROC CLOCKREAD

.PUBLIC THYME ; GLOBAL PASCAL VARIABLE

.PUBLIC COUNT ; GLOBAL PASCAL VARIABLE
FREQI .EQU 61146 ; CSR - FREQ = 1 KHZ
FREQ2 .EQU 61136 FREQ = 10 KHZ
FREQ3 .EQU 61156 FREQ = 100 HZ
KWBPR .EQU 170462 ; BPR REG AT 170462
KWCSR .EQU 170460 ; CSR REG AT 170460
OFLVEC .EQU 440 ; OFLO VECTOR AT 440
ST2VEC .EQU 444 ; SCHMITT TRIG VECTOR AT 444

MOV #ST2SRV,@#ST2VEC ; ST2SRV INTERRUPT ADDRESS
MOV #OFLSRV,@#OFLVEC ; OFLO INTERRUPT ADDRESS

CLKGO: NOV #61146,@#KWCSR ; LOAD CSR REGISTER WITH -
INTERRUPT ST2 (14)
ST2 INITIATES GO (13)
SIMULATE ST2 (9)
INTERRUPT OFLO (6)

; CLOCK RATE OF 10KHz
MODE 3 (2&1)

RTS PC ; RETURN TO PASCAL HOST
ST2SRV: BIT #100000,@#KWBPR ; TEST MOST SIG BIT OF BPR

BEQ BPRMOV ; IF MSB NOT SET, BRANCH
INC @#COUNT ; INCREMENT OVFLO COUNTER

BPRMOV: MOV @#KWBPR,@#THYRE ; INTERRUPT ADDRESS -
MOVE CONTENTS OF BPR TO THYME

BIC #100000,@#THYE ; RESET MSB (SUBTRACT HALF)
RTI ; RETURN FROM INTERRUPT

CFLSRV: INC @#COUNT ; INCREMENT OFLO COUNTER
INC @WCOUNT ; TWICE
BIC #200,@#KWCSR ; CLEAR BIT 7 OF CSR
RTI ; RETURN FROM INTERRUPT
.END

Ficjure 6. External Subroutine

enough to cause the clock to overflow, an overflow counter

is maintained and stored in global variable COUNT to be

used during data reduction.

The logic flow of the external subroutine consists of

an initialization portion and two interrupt service

44

r

routines. The memory locations of the CSR and BPR are

identified through the use of equate statements. The

locations of the Schmitt Trigger and Overflow vectors are

also defined. The address of the interrupt service routine

(located at ST2SRV) is placed into the ST2 vector location

and the address of the counter overflow service routine

(located at OFLSRV) into the OVFLO vector location. The CSR

is then initialized with the value 61146, which sets the

appropriate CSR bits to institute the following action:

1. Every time the Schmitt Trigger is fired (i.e.,

each time the subroutine is entered). an interrupt is

generated, passing control to the ST2 interrupt service

routine. (Bit 14)

2. Every time the Schmitt Trigger is fired, a bit

called the GO bit is set which initiates the clock. (Bit

13)

3. Maint ST2 is set which simulates the firing of the

Schmitt Trigger. (Bit 9)

4. Every time the clock overflows, an interrupt is

generated , passing control to the overflow interrupt

service routine which subsequently increments the overflow

counter. (Bit 6)

5. The clock frequency is set to 1 KHz to perform the

monitoring function (Bits 5,4, and 3). To increase the

frequency of the monitoring clock/counter to 10 KHz, the

CSR may be loaded with - e value equated to FREQ2. If a

45

slower frequency is desired, FREQ3 may be employed. A

frequency greater than 10 KHz causes problems, however,

because overflow conditions may occur during the processing

of the external subroutine itself. Considering the fact

that the monitor could eventually be employed to time

executions requiring more than an hour of execution time, a

1 KHz frequency seems most appropriate.

6. The clock is set to Mode 3, which causes the clock

to be reinitialized to 0 every time the Schmitt Trigger

fires (i.e., every time the monitor is called). (Bits 1 and

2)

Control is then returned to the PASCAL host.

The KWV11-A internal clock/counter is capable of

storing an octal value of 65535. A problem arises, however,

when a value of this magnitude is moved into a UCSD PASCAL

integer type variable. Any positive number exceeding an

octal value of 32767 is considered a negative number when

stored as a PASCAL integer. To preclude potential

confusion, the overflow counter (COUNT) is incremented each

time the clock exceeds 32767. When the ST2 interrupt

service routine is called at ST2SRV, the BPR has just been

loaded with the contents of the clock/counter. The clock

value must subsequently be transferred to the PASCAL

variable THYME. First, however, it must be determined if

the BPR contents exceed 32767 (octal). If this is the case,

46

[l

the most significant bit (t4SB) if the BPR will be set, and

the overflow counter is incremented by one. In either case,

the BPR contents are moved into the variable THYME, and the

MSB is cleared. Note that the MSB of the BPR was not

cleared before the transfer was made, because during this

processing the GO bit is set, and the BPR is not capable of

being modified while the GO bit is in this status. In

effect, the preceeding logic divides the contents of the

BPR by 32767 (octal) , increments the overflow counter by

the value of the quotient, and restores the variable THYME

with the remainder. Control is then returned from the

service routine.

When the overflow service routine is called, the

overflow counter is incremented twice, indicating that

32767 (octal) has been exceeded two times. Bit 7 of the

CSR, the overflow flag, is reset to permit subsequent

overflow interrupts to occur.

The algorithm used to perform the monitoring function

requires the PASCAL host to call an externally assembled

procedure which in turn causes the generation of an

interrupt. Upon the occurrence of this Schmitt Trigger 2

interrupt, the Buffer/Preset Register is loaded with the

contents of the clock/counter, and may be subsequently read

* by the program. This procedure may seem awkward; it would

K be more straightforward to simply read the clock during
processing. Unfortunately, however, the KWV11-A

clock/counter is strictly an internal register, capable of

N 47

g 7

being read only indirectly via the BPR.

To further illustrate the logic flow of the

procedure, let us assume that two calls to the monitor have

been inserted into the PASCAL host program. Let us further

assume that the time interval between the two calls causes

an overflow of the KWVIl- A clock. The processing would

occur as follows:

1. The monitor subroutine would be entered initially.

The ST2 vector would be initialized with the address of the

ST2 service routine and the OVFLO vector with the overflow

service routine address.

2. The CSR would be loaded and control returned to

the PASCAL host program.

3. The Schmitt trigger would be fired. The clock

value (0) would be placed in the BPR. Control would pass to

the ST2 service routine, where the BPR value would be

loaded into the variable THYME. The MSB of variable THYME

would be reset, and control would pass back to the PASCAL

host program.

4. During the processing of the PASCAL host, the

clock counter would overflow. An interrupt would be

generated which would cause the execution of the overflow

service routine. The overflow counter would be incremented

twice. The overflow bit of the CSR which had been set at

the time of the overflow would be reset to 0. Control would

return to the PASCAL host.

48

*

5. When the monitor is called the second time from

the PASCAL host, the CSR is again loaded. The ST2 service

routine is called and moves the adjusted contents of the

BPRI which now contains the elapsed time since the clock

overflow, into THYME. If the MSB of the BPR is set, the

overflow counter is incremented and the MSB of the updated

variable THYME is reset.

Two things are now evident. First, the clock was

forced to exceed 32767 (octal) by the number of times

indicated in the PASCAL variable COUNT. Second, a value of

elapsed time since the last overflow occurred resides in

THYME.

CALLING THE MONITOR

Calling the software monitor from the Roth database

system is a straightforward task. Because the assembly

procedure is set up as a UCSD PASCAL external procedure, it

may be called from its host routine just as any PASCAL

procedure would be; i.e., by exercising a call to procedure

MONITOR. The one consideration when calling the monitor is

the identification of the location from which the monitor

is being initiated. This identification is made by passing

an integer parameter from the PASCAL host to the interface

logic which subsequently allows the user to know from where

each call was made. Figure 7 illustrates the insertion of

three monitor calls into the EXECUTE segment of the host

49

......

code.

IF COMFILE = NIL THEN
BEGIN

WRITELN(' NO FILE TO EXECUTE....);
EXIT (EXECUTE)

END;
MONITOR (1) ;
TREE (RELLIST,COMFILE,ERROR,CHAIN);
MONITOR (2) ;

BEGIN
INSUPS; PRINTTREE;
MONITOR(3);

Figure 7. Calling the Monitor

Because of the ease of calling the monitor, system

requirements may be satisfied by inserting calls into

appropriate locations within the PASCAL host. Every time

new monitor calls are inserted, the appropriate segment

must be recompiled and reinserted into the existing

50

operational code file using the LIBRARY utility.

HOST-SUBROUTINE INTERFACE

Having created the subroutine CLOCKREAD which is

responsible for manipulating the KWV-1A clock, as well as

having inserted "hooks" into the PASCAL host to initiate

the monitoring procedure, the only task remaining before

the monitor may be implemented is to establish the

interface between the two. Permitting communications

between external subroutine and PASCAL host is accomplished

largely through the use of the COMMON unit.

The COMMON unit, like all UCSD PASCAL Units, consists

of two sections, the interface section and the

implementation section. The COMMON unit is written

exclusively in PASCAL, but by using the UCSD PASCAL

EXTERNAL declaration feature, a small PASCAL procedure

resident in COMMON may be called from the host, in turn

calling the assembly CLOCKREAD subroutine, thus serving as

a "stepping stone" from host to subroutine. This technique

is required, because when using segmented PASCAL code, it

is imperative that any call to an external procedure or

function be made from the same segment which defines that

procedure or function.

Figure 8 illustrates the modifications made to the

COMMON unit to establish the subroutine-host interface. The

host calls the monitor simply by making a PASCAL procedure

call using a unique integer parameter to identify the call

51

UNIT COMMON;
INTERFACE
CONST MONTRSIZE =20;

MONTRCRD = RECORD
CLCKTIME :INTEGER;
OVFLCOUNT :INTEGER;
PNCTION : INTEGER;

END;
ARRA = ARRAY(1..MONTRSIZEI OF MONTRCRD;

VAR

THYME: INTEGER;
COUNT: INTEGER;
MONTROUTPUT:ARRA;
MONTRPTR: INTEGER;

PROCEDURE MONITOR(FUNCT : INTEGER);

IMPLEMENTATION

PROCEDURE CLOCKREAD; EXTERNAL;

PROCEDURE MONITOR;
BEGIN
CLOCKREAD;
MONTROUTPUT[MONTRPTR] .CLCKTIME :=THYME;
MONTROUTPUT[MONTRPTR] .OVFLCOUNT := COUNT;
MONTROUTPUT [MONTRPTRI .FNCTION :=FUNCT;
MONTRPTR := MONTRPTR + 1
COUNT 0;
END; (*MONITOR*)

Figure 8. Unit COMMON

52

(e.g., MONITOR(3f). Because MONITOR is identified in the

INTERFACE section of COMMON, a call to this PASCAL

procedure may be made from any segment of the Roth code

which uses UNIT COMMON. In addition to being identified in

the INTERFACE section, the PASCAL pocedure MONITOR is coded

in the IMPLEMENTATION section of COMMON. Also appearing in

the IMPLEMENTATION section is a PASCAL statement declaring

CLOCKREAD as an external assembly language procedure.

The logic flow of procedure MONITOR is

straightforward. The procedure first calls CLOCKREAD, the

external subroutine, which transfers the clock time from

the BPR to THYME and moves the number of clock overflows to

COUNT. Additionally, the integer parameter passed when

MONITOR was called resides in FUNCT. These three values are

placed in the record element of an array called ARRA, and

the array pointer is incremented by one to point to the

next record for subsequent processing. Control is then

returned to the calling program. The final result of a

series of monitor calls is an array of records, each

containing a clock value, a number of overflows, and an

identifier indicating from where the monitor was called.

The array is then written to diskette by the COMMON

resident PASCAL procedure PRINTMON to permit offline data

analysis.

In addition to modifying COMMON to allow proper host-

subroutine interface, the rcchanics used to rebuild the

Roth system are also unique. Appendix C outlines the

53

procedures required to build the system to permit execution

of the monitor.

PROCESSING THE MONITOR RESULTS

Once all monitoring has been completed, and the array

of clock values has been constructed, the array must be

written to diskette to be used by an offline data reduction

program which will analyze the results of the monitoring

effort. This task is accomplished by the procedure

PRINTMON, which, like MONITOR, resides in the

implementation area of COMMON. PRINTMON is listed in Figure

9, requires no parameter passing, and may be invoked from

any segment which uses UNIT COMMON.

It is worthy to note that either one of two

techniques could have been employed to write the monitor

results to diskette. Either a PASCAL array could have been

created during processing, with the entire array written

to diskette, or the result of each monitor invocation

could have been written on an individual basis as the

results became avzailable. The major disadvantage of

writing the entire array is that the array requires

notable memory resources in an already restricted

environment; conversely, the disadvantage of writing the

individual results is that this action would add

significant overhead to execution times. The first option

was chosen to be implemented, largely because the size of

the monitor data array is "adjustable"; by modifying the

54

UNIT COMMON;
INTERFACE

PROCEDURE PRINTMON;

IMPLEMENTATION

PROCEDURE PRINTMON;
VAR CNT : INTEGER;

M : INTERACTIVE;
BEGIN

REWRITE(M, #5:MONFIL.TEXT');
WRITELN(M,' MONITOR RESULTS
WRITELN(M);
WRITELN(M,' FUNCTION TIME COUNT');
WRITELN(M);
FOR CNT := 1 TO (MONTRPTR - 1) DO
WRITELN(M,' ',MONTROUTPUT[CNT] .FNCTION,'

MONTROUTPUT[CNTI .CLCKTIME,'
MONTROUTPUTICNTI.OVFLCOUNT);

CLOSE(M,LOCK)
END; (* PRINTMON *)

Figure 9. Procedure PRINTMON

value assigned to the constant MONTRSIZE in the

COMMON UNIT, the corresponding array becomes just large

enough to accommodate the number of monitor calls made. The

PRINTMON procedure makes use of three UCSD PASCAL features

55

iI
i

which enhance the capability of writing the file to

diskette. First, the variable M is declared an interactive

type variable. Next, the REWRITE statement is used to open

and create a new file on Logical Unit 5, to be listed in the

disk directory as MONFIL.TEXT. The normal PASCAL WRITELN

statements are then used to write the required information,

with the variable M used to indicate that the data is to be

written to diskette. Finally, the file is closed using the

LOCK option, which permanently places the file name in the

disk directory. Upon completion of the database processing,

the file MONFIL.TEXT may be used to analyze the monitoring

effort. Figure 10 displays a call to PRINTMON after TREE and

subsequent procedures have been monitored and Figure 11

shows the listing of the resulting file MONFIL.TEXT.

MONITOR OVERHEAD

An issue which must be dealt with is the problem of

monitor overhead, i.e., the time required to execute the

monitor. Since an attempt is being made to time the

execution of a set of logic, it does indeed seem vital that

the amount of processor time "wasted" during the actual

measurement be accounted for. Monitor overhead may be

measured in one of two ways: either analytically or

empirically. An analytic measurement would require

determining the execution times of each instruction and

summing them together to reveal the total overhead

56

^I L ' .. . r . . ,, & "I °: i . . ' ,L ":.

BEGIN (* EXECUTE *

MONITOR(1) ;
TREE (RELLIST,COMFILE,ERROR,CHAIN);
MONITOR(2);

BEGIN
INSU PS; PRINTTREE;
MONITOR93);
PRINTMON;

Figure 10. Calling PRINTMON

MONITOR RESULTS

FUNCTION TIME COUNT

1 0 0
2 1537 0
3 1408 0

Figure 11. Monitor Results

57

processing time. An empirical measurement could be

performed by executing a series of monitor calls which

actually monitor themselves, thereby revealing a good

indication of the processing time of each call. A third

alternative would be to combine analytic and empirical

measurement, in turn determining the execution times of

each portion of the monitor logic.

The execution of the monitor is graphically displayed

in Figure 12. The PASCAL host places a call to the

assembly procedure, passing control to the monitor. After

performing some initialization, the procedure loads the

CSR which causes the firing of the Schmitt Trigger and

initiation of the clock. Control then returns to the host

until the Schmitt Trigger interrupt returns control to the

interrupt address. The interrupt routine executes,

returning control to the host until either a clock/counter

overflow occurs, causirng the overflow routine to process,

or until another monitor call is made.

Executing ten successive monitor calls reveals that

the average time required to execute a single call without

overflow is 4200 microseconds (4.2 milliseconds) , as

depicted in Figure 12. Furthermore, analytic measurement

V using Appendix C of the Digital Microcomputers and Memories

Manual (Ref. 9), shows that the actual time required to

execute the monitor instructions without overflow

58

SET CSR
FIRE ST2
LOAD BPR
REINITIATE CLOCK

MONITOR .ST2SRV OFLSRV
CALL

* .RTI .RTI

* . RTS
* * PC

ASSEMBLY .

PROCEDURE

INTERFACE

PASCAL
HOST

x. .12.60... .x x26.95xx225.

x 4200.00............... x

*note: all measurements in microseconds

Figure 12. Monitor overhea~d

59

(initialization plus ST2 service routine) is 39.55

microseconds. The processing time required by the overflow

service routine is 22.75 microseconds. As one would expect,

these figures indicate that the large majority of monitor

overhead time (4160.45 microseconds) is consumed by the

UCSD PASCAL monitor interface resident in the COMMON

module. Mathematically, the monitor overhead time may be

represented as follows:

ASSEMBLY SUBROUTINE INITIALIZATION TIME +

ASSEMBLY SUBROUTINE ST2 INTERRUPT SERVICE ROUTINE TIME +

COMMON RESIDENT INTERFACE LOGIC EXECUTION TIME +

(# OVERFLOWS * ASSEMBLY SUBROUTINE OVPL SERVICE ROUTINE TIME)

TOTAL MONITOR OVERHEAD TIME (1)

or,

4200 microseconds +

(# OVERFLOWS * 22.75 microseconds)

TOTAL MONITOR OVERHEAD TIME (2)

DATA REDUCTION AND VERIFICATION

The two remaining objectives required to complete the

development of the Roth Database monitor are the creation

of an offline data reduction program and a test of an

instrumented system which will verify that the monitor will

60

r
collect data and handle overflow conditions properly.

Appendix D is a listing of program ANALYZE, a PASCAL

routine which takes the data recorded in file MONFIL.TEXT

and reduces it to yield overall system execution times.

ANALYZE basically consists of two parts, the reading of

MONFIL.TEXT and the creation of a second disk file,

ANALFIL.TEXT which contains the reduced information. After

it resets the input file, ANALYZE spaces past the first

four header lines and reads the tabular data (Ref. Figure

11) into an array called ANALARRA. An 1*1 is written to the

console screen for every line read from MONFIL.TEXT.

After the array ANALARRA has been created, the data

it contains is transformed into the final monitoring

results and written to diskette file ANALFIL.TEXT, with an

"*" printed to the screen corresponding to every line

written to disk. The first step of this process is to

determine the number of times the actual KWVlI-A

clock/counter overflowed (OVFLTOT), in addition to the

value recorded in the array (ANALARRA[INCR].OVFLCOUNT). The

total overhead is then calculated using Equation 1, where

OVHEAD is equated to the sum of the initialization time,

ST2 service time, and PASCAL overhead time. The total

processing time is then calculated using the following

formula:

(OVERFLOW COUNT * 32767) +

CLOCKTIME -

61

TOTAL OVERHEAD =

TOTAL PROCESSING TIME (3)

Two techniques were employed during this calculation

to permit accurate results. First, variable FINALVAL was

declared as a UCSD "long" integer, capable of storing a

signed decimal value twenty digits in length (Ref. 19, p.

155). Had this procedure not been used, a maximum value of

only 32767 could have been stored in FINALVAL. Second, the

value of TOTOVHED had to be rounded off to ensure

compatability within the mathematical expression.

Before any meaningful results can be drawn from

monitoring the Roth Database optimization logic, a test of

the monitor needs to be performed to verify the following

capabilities:

1. Absence of obvious run-time errors.
2. Proper advancement of the clock/counter.

3. Resetting of the BPR to zero each time the trigger is

fired.

4. Proper advancement of the overflow counter.

5. Accurate data reduction and presentation.

These capabilities were indeed verified using the

following techniques:

1. Run-t-ime errors were corrected during normal

62

system execution.

2. Analysis of the results written to disk file

IONFIL.TEXT show that the BPR values placed into the file

contained different values for different procedures

monitored. Additionally, these values appeared to be

commensurate with the time these procedures should require

to process relative to one another. These two observations

supported the supposition that the clock/counter was being

properly advanced.

3. Resetting the BPR at the firing of the trigger was

verified by the fact that the CLCKTIME results stored in

MONFIL.TEXT are obviously not cumulative.

4. In order to verify the advancement of the overflow

counter, two dummy PASCAL FOR .. DO loops were inserted

into the Roth DML code and monitored successively. The

first test, which consisted of an outer FOR .. DO loop of

twenty iterations and an inner FOR .. DO loop of 3200

iterations, caused a value of 9 to be placed in the

overflow counter, and a value of 17562 placed in the

CLCI(TIME variable. Reduction of these values yielded a

processing time of 312474 milliseconds. The outer loop then

was modified from twenty iterations to forty iterations. It

would intuitively seem that the total operating time of the

test logic should also approximately double. In fact, the

overflow counter Went from a value of 9 to 19 and CLCKTIME

changed to 3057, yielding a total value of 625649, almost

j exactly double the first calculated result. Additional

63

modifications further confirmed that the overflow counter

was incremented properly, all the way up to a value of 57.

5. By processing the values appearing in MONFIL.TEXT

using a calculator, the offline reduction program ANALYZE

was verified as correct.

64

64I

V MODELING THE ROTH OPTIMIZATION LOGIC

BACKGROUND

Monitoring the performance of the Roth database

optimization logic is a straightforward means of measuring

the effectiveness of these modules. Unfortunately, however,

successful monitoring is based on the premise that the code

being measured is operational; it is not feasible that

monitor hooks be placed in software that does not achieve

its intended objectives. This limitation to monitoring

makes evident one of the advantages to modeling the

performance of a system - design, not code is the actual

object of the model.

A system may be thought of as a collection of

interacting elements affected by outside forces; converscly,

a model is anh abstraction of this system. In order to

effectively create this abstraction, two things must be

established immediately: the purpose for modeling the system

and the elements of the system which must be included in the

model to provide an accurate representation. The modeling

process may be depicted as:

1. Define the purpose of the model.

2. Establish the boundaries of the system to be modeled.

3. Determine the level (or levels) of detail to be

65

represented.

4. Establish system performance measures.

5. Define design alternatives (parametric and structural)

which, if implemented, could lead to improved performance.

6. Assess results, experiment with alternatives, and

implement the most effective model.

A pictorial representation of this process appears in

Figure 13.

The purpose of this chapter is to address, in detail,

the six steps of the modeling process as it applies to the

Roth database optimization design. Since a model may be

thought of as a laboratory version of a system, the

overriding objective motivating this modeling effort is to

measure the effectiveness of the theories included in the

optimization design and, if required, suggest improvements

to the system which could enhance processing efficiency.

A simulation model which represents a system is

classified as one of two types: discrete change or

continuous change. In most simulation models, including a

model of a database system, time serves as the model's

independent variable. The means by which the dependent

variables fluctuate as a function of time, i.e., at discrete

time intervals or continuously over the time spectrum,

determines the classification of the model. It is noteworthy

that these classifications identify models, not systems, and

66

.1I

SYSTEM

PURPOSE LEVEL OF DETAIL BOUNDARIES

P71FORMANCE DESIGN
MEASURES ALTERNATIVES

MO DEL

ANALYS IS

IMPLEMENTATION

Figure 13. The Modeling Process

67

that a single system could possibly be represented by

either a discrete model or a continuous model (or a

combination of the two, called a combined model).

SLAM, the Simulation Language for Alternative

Modeling, is a high order modeling language which permits

simulation in any of the three modes: discrete, continuous,

or combined. SLAM employs a network structure which

consists of symbols called nodes and branches. These

symbols, which depict such items of interest as queues,

servers, and decision points, are combined into a single

network which represents the system being modeled. Entities

are then created and allowed to flow through this pictorial

representation, while statistics are simultaneously being

generated which consequently provide insight into the

capabilities of the system. In addition to the standard

capabilities provided with SLAM, the optional use of

FORTRAN user-written subroutines expands the potential for

the model to provide a realistic representation of the

subj e ct.

Before addressing the model of the Roth logic, a

A brief description of the key SLAM capabilitiLes is

appropriate. The CREATE node is used to generate entites

within the system and permits user specification of

interarrival time, maximum number of entities created, and

number of emanating activiti.es. The QUEUE node permits the

delay of entities at a specified location of the network

until the appropriate server becomes available. The service

68

activity represents actual processing in the system and

either emanates from a queue or is chosen from other

qualified servers by a SELECT node. The GOON node provides

a routing capability to another point in the network with

every entering entity passing directly through the node.

The COLLECT node is used to collect statistics related to

either the time an entity arrives at a node or a variable

at the entity arrival time.

PURPOSE OF THE ROTH MODEL

The purpose of a model of the Roth database

optimization logic is to provide an accurate

representation of data flow beginning with the initial

execution of a command file through the completion of the

execution of the RUN module. SLAM generated statistics

provide an excellent indication of the processing time

required by each logic module, ranging from entire segment

to small procedure. Each entity flowing through the system

represents a relational algebra command, a multi- command

query, an operator tree, or a network of trees depending on

the specific application and location within the system,

with attributes assigned to these entities characterizing

their complexity, type, and anomalies. By modifying these

parameters along with the structure of the network,

potential optimization logic bottlenecks and areas

requiring improvement can be identified.

69

SYSTEM BOUNDARIES

In many modeling applications, establishing system

boundaries is a difficult task which is even sometimes

overlooked. one of the keys to a successful, meaningful

model is clearly defining what it is that needs to be

modeled. If only a portion of an operational activity is to

be analyzed, for example, it is usually not necessary to

model the entire organization. It is absolutely crucial

that a clear beginning point and terminal point be

established before the modeling effort can proceed.

The goals set forth in the requirements chapter of

this thesis dictate that the Roth database system model

should pertain to the optimization logic contained within

the data manipulation language (D?4L), thus establishing the

system boundaries to be modeled. Due to the modular design

of the Roth system, the four optimization modules (TREE,

* SPLITUP, OPTIMIZE and RUN) are all controlled by a central

driver, the EXECUTE procedure. It is noteworthy that the

top-down, modular construction of the database permits a

very straightforward interpretation of optimization logic

boundaries.

LEVELS OF MODELING DETAIL

Due to the complexity of the Roth optimization logic,

the best technique used to model the system is also a top-

down, hierarchical approach, beginning with a simplistic

model of the modules as a whole, and ending with detail

70

which depicts individual PASCAL procedures. The major

advantage to this approach is its vivid representation of

the system. Appendix A contains SLAMII network diagrams

which depict the first two levels of representation of the

Roth optimization modules. Each of these diagrams will be

described in detail.

LEVEL I

The first SLAM diagram, a LEVEL I representation,

serves as a simplistic model of the Roth optimization

modules. A simulation of the Roth logic at this overview

level of detail functions as an introduction to the

processing flow of the modules. At this level of

representation, a single entity corresponds to a given

relational algebra command file, because an overall view of

the optimization logic evaluates the effectiveness of

processing entire command files rather than individual

relational algebra commands. Figure 14 depicts the data flow

represented by the LEVEL I model.

Simplistically stated, a command file is presented as

input to the optimization logic. This transaction is

represented by the creation of an entity in the LEVEL I

model. A total of five entities are created, each

corresponding to one of the benchmark queries provided in

_____ _____ ____71

COMMAND
FILE

..... TREE

SPLITUP

OPTIMIZE

RUN

* USER
RESPONSE

Figure 14. Level I Overview

72

Appendix B. The Roth system completely processes a

given command file before accepting another as input. The

LEVEL I model simulates this by forcing an entity to wait at

the beginning of the simulation flow until the previous

entity is completely through the system. The four

optimization modules are then encountered in order and the

entity terminates as a response to the user. Upon

termination, the succeeding simulated command file is

permitted to begin processing through the optimization

logic.

LEVEL II

The LEVEL II diagrams appearing in Appendix A provide

a more detailed representation of the same logic modeled in

the LEVEL I design. In this instance, each optimization

module is represented by a single SLAM diagram; however, as

an entity exits one module it becomes the input to the

next. This process ties the modules together and provides a

single, stand-alone representation of the Roth optimization

logic at a second level of detail. Unlike the LEVEL I miodel

which simulates the processing of a set of queries, the

LEVEL II model simulates the in-line processing of

individual command files, each consisting of relational

algebra commands.

The first LEVEL II SLAM diagram represents the TREE

optimization procedure. A given command file, which

73

constitutes the input to the TREE module, is simulated by

creating the number of entities corresponding to the number

of commands in the file. These entities then pass through

the TOKEN procedure of the Roth code which returns the type

of command being examined. The remainder of the TREE module

processes these commands individually; thus, after the

execution of the TOKEN procedure, each command is detained

until the preceeding command is allowed to complete TREE

processing. The remaining TREE processing is merely a call

to one of five procedures: DUIP, SELECT, JOIN, PROJECT, or

DIVIDE. In the actual system, these procedures are

responsible for creating the corresponding node of the

operator tree. The specific call depends upon the type of

relational algebra command being executed. At the

completion of this procedure, the subsequent entity is

permitted to proceed. All entities completing the TREE

processing are discarded except the last one, which now

simulates the network of operator trees used as input to

the SPLITUP module.

The next LEVEL II diagram represents the second

optimization module, SPLITUP. At this level of detail,

SPLITUP is straightforward to model, consisting of five

submodules: FINDHEADS, LONGTREE, FIXFIELD, DIVORCE, and

REVCHAIN. SPLITUP receives a single entity, the network of

shared trees provided by TREE. The entity first passes

through activity FINDHEADS, which represents the linking of

the network root nodes. Next, procedure LONGTREE sorts this

74

A-

chain of root nodes, placing the root of the tree with the

greatest number of shared subtrees first, and the root of

the tree with the least number of shared subtrees last. The

next simulated procedure is FIXFIELD, which initializes each

node's attribute field. The entity next encounters the

DIVORCE activity, which separates the shared subtrees from

each tree of the network. Finally, REVCHAIN is encountered.

REVCHAIN reverses the order of the root nodes to permit the

formerly shared subtrees to be executed before the results

of these operator subtrees are utilized. The model of

procedure SPLITUP terminates with the creation of multiple

entities, each representing an individual tree containing no

shared subtrees. These individual trees condstitute the

input to the OPTIMIZE module.

The third SLAM diagram represents the OPTIMIZE module

o ;he Roth optimization logic. As was the case with the

TREE simulation, entities are only permitted to process

individually because the actual OPTIMIZE logic processes a

single tree at a time, As in the system itself, this

portion of the LEVEL II model depicts OPTIMIZE as a sum of

five sub-procedures: COMBOOL, SELDOWN, SIMSEL, PROJDOWN,

and ELIMDUPROJ.

COMBOOL, the first procedure simulated, is

responsible for transforming a unique tree structure called

a "boolean subtree" into a single operator having a single

compound predicate. The algorithm employed by COMBOOL is a

direct implementation of one of the optimization techniques

75

I ~ -- -

under investigation; thus, the experimental modeling of

this procedure at more detailed levels will be significant.

The SELDOWN procedure, executed next by the OPTIMIZE

module, moves SELECT operators down the operator tree. The

tree entity next encounters the SIMSEL activity, which

simplifies the boolean predicates of the SELECT operators.

The next simulated activity encountered is the PROJDOWN

procedure, which moves PROJECT operators down the operator

tree. Finally, the entity traverses the ELIMDUPROJ

procedure, which eliminates duplicate PROJECT operators.

After these five activities have been traversed, the

succeeding entity is permitted to enter the OPTIMIZE logic.

The input to OPTIMIZE was a series of individual trees

created by SPLITUP. The result of OPTIMIZE is a series of

optimized versions of these trees.

The final LEVEL II SLAM diagram depicts the RUN

module of the Roth Database optimization logic. The

baseline design of this procedure was presented in the Roth

Thesis (Ref. 17, p. 77) and partially coded as an

independent study by Lt. Peter Raeth. The module implements

the technique presented in the Smith & Chang paper (Ref.

18), called the Coordinating Operator Constructor. The

model shows that the single entity, representing the

optimized operator tree produced by OPTIMIZE, first flows

through activity INSUPS. INSUPS serves as a prelude to the

actual algorithm which links the opeLator nodes. The entity

then simulates being processed by the activities UPTREE and

76-i- 7 .

DOWNTREE, two submodules which actually perform the RUN

optimization algorithm. Finally, a procedure tentatively

called EXEC is simulated. EXEC will be responsibl.e for

executing the procedure calls created by DOWNTREE. All

entities which complete EXEC processing, except the last

one, are discarded. The last entity exits the system

representing the result of the query being returned to the

user.

Models of the Roth query optimization logic have now

been designed at the first two levels of detail. While it

is beyond the scope of this thesis effort to represent the

system at any further detail level, it is noteworthy that

these two baseline models do provide an excellent overview

of the Roth database optimization modules and an essential

beginning point for future Roth logic modeling.

SYSTEM PERFORMANCE MEASURES

The next step in the modeling process is the

establishment of system performance parameters; i.e., what

values should be used to accurately portray

the roth system processing times, what modifications should

be made to these parameters to correctly reflect different

query operating characteristics, and what SLAM statistics

should be Used to evaluate the outcome of theseK modifications?
Because the majority of time devoted to this thesis

was spent developing the software monitor and the design ot

77

a portion of the optimization logic has not yet been

completed, the detailed development of these performance

measurements was not determined to be within the scope of

this effort.

It is noteworthy, however, that determining activity

durations which represent the execution time of sets of

optimization logic is the first step required to

parametrically depict the Roth system. The development of

these values may be performed in one of two ways:

empirically or analytically. Empirical parameter formulation

implies that duration values would be assigned based on

observation. Since the Roth database system is not yet

operational for complex queries, empirical assignment of

parameter values is currently impractical.

Analytic calculation of activity duration times,

then, is the next task required to continue this modeling

effort. Analytically determining these execution times will

be a non-trivial task requiring the analysis of the number

of lines of executed code as well as the number of I/O

transactions performed during the processing of a given

relational algebra query.

DEFINE ALTERNATIVES, EXPERIMENT, AND IMPLEMENT

The final two steps in the modeling process are to

analyze the results ol the simulation effort and attempt to

detect possible weaknesses in the optimization logic which,

if corrected, could further decrease the amount of execution

78

required to perform a given user query. Having uncovered

these potential deficiencies in the system, either

parametric or structural changes to the model can be made,

and the model can be executed again, revealing if these

revisions are beneficial. Based on the observations provided

by the modifications to the model, permanent design and

implementation changes can be made to the Roth system which

will improve the processing efficiency of the data retrieval

function.

SUMMARY

Due to the complex nature of the Roth optimization

modules and the time constraints imposed on the completion

of this project, coding and implementing the model was not

accomplished. Instead, the purpose of the Roth logic model

was defined and the boundaries of the system to be simulated

were established in conjunction with the requirements set

forth in Chapter 3 of this thesis. In addition, the first

two levels of detail were established and represented in the

form of SLAM network diagrams. The next logical step of this

task would be to continue model development to the third,

fourth, and even fifth levels of detail. In concert with

this activity, critical system parameters have to be

-' established. Finally, the diagrams need to be converted to

SLAM code, implemented, analyzed, and modified to provide

experimntal results.

79

VI CONCLUSION

SUMMARY

There were three objectives pursued as the goal of

this thesis. The first objective was to develop an

understanding of state of the art methods used to measure

the performance of database management systems. This

objective was satisfied as a result of the literature

searching accomplished during the initial stage of the

effort.

The second objective of this endeavor was to develop

a practical method of measuring the efficiency of a set of

relational algebra query optimization techniques integrated

within the data manipulation language of the Roth

Pedagogical Relational Database. Research indicated that

not one, but two methods could be used to perform this

measurement. Monitoring the execution of the optimization

logic would clearly display the amount of time required by

individual modules to process a set of benchmark queries

designed to test the system'& capabilities. As an

alternative to monitoring, modeling the Roth optimization

system would provide the capability of evaluating

peformance even before system implementation.

A performance monitor was developed using a

combination of tJCSD PASCAL and assembly level programming

designed to measure the execution time of the Roth

.so

database query optimization modules. Although the monitor

was initially designed strictly for this purpose, it is

noteworthy that use of this software tool is equally

applicable to any UCSD PASCAL program implemented on the

LSI-11/2 Microcomputer. The monitor may be initiated at any

point in PASCAL logic by merely calling PASCAL procedure

MONITOR.

A model of the Roth optimization logic was also

initiated as part of this thesis effort. It was determined

that effective modeling of the Roth system should be

approached in a hierarchical manner, beginning with a

LEVEL I overview of the modules to be simulated.

Subsequent models of the system could then be developed,

each with increased detail which would eventually lead to

an experimental indication of the merit of the optimization

techniques.

The third objective of the project was the

implementation of the optimization logic monitor followed

by as much implementation of the model as permitted during

the time allotted to complete this effort. This objective

was only partially satisfied.

As expected, the greatest liability encountered when

attempting to implement a relational database on a

microprocesser is resource limitation. At the time the

monitor development was nearing completion, and execution

of the Roth manipulation logic using the benchmark queries

in Appendix B was beginning, memory limitation problems

81

became apparent. As a result, only minimal relational

algebra queries, consisting of two commands, could be used

to test the system. While these small queries were

sufficient to validate the monitor, they were unfortunately

not large enough to provide conclusions pertaining to the

effectiveness of the optimization logic. The model of the

system, designed through the second level of detail,

provides an excellent overview of the optimization logic as

well as a beginning point for further development, but

will not provide results until the coding and

implementation stages of more detailed models have been

completed. Two noteworthy areas of difficulty were

uncovered during this thesis effort. They are:

1. Available documentation describing the Version II

UCSD PASCAL System is weak. This difficulty was especially

evidenced during the early implementation of the monitor.

According to the Version II manual, implementing the

external assembly language procedure should be a

straightforward task, simply consisting of declaring the

* external procedure and calling it as any other PASCAL

procedure would be called. What is not documented, however,

is that when attempting to use this technique within

segmented code, a unique problem arises.

Due to the segmentation of the Roth data manipulation

language, applications procedures from which monitor calls

are made reside within one of these PASCAL segments. In

82

order to consolidate all global variables and common

utility procedures, Roth dedicated a PASCAL unit as a

depository for these common elements. It initially seemed

appropriate to declare the external assembly program in

the COMMON unit, and simply call it from one of the

segments of code. The manual implied that this procedure

was legal and would provide predictable results.

The implementation of this technique, however,

resulted in an execution error. Much time and effort was

devoted to attempting to correct this error, including

correspondence with the SOFTECH Corporation, the APPLE

Computer company (which has a similar segmented UCSD PASCAL

system), and the University of California at San Diego

microprocessor laboratory, all to no avail. Finally, at

the suggestion of my thesis advisor, Dr. Hartrum, another

technique was attempted. Rather than call the procedure

from a segment of code, the PASCAL procedure which

actually calls the monitor was inserted into the COMMON

unit. This procedure is then called from the segment of

PASCAL code, effectively ceating a "stepping stone"

affect. The implementation of this technique executed

properly, indicating that an external assembly procedure

can only be called from the segment (or unit) i;which

declares it.

2. A secord technical area of difficulty arose during

the actual testing of the monitor. The Microcomputer

83

Interfaces Handbook published by the Digital Corporation

(Ref. 10), provided the documentation describing the KWV1l-

A clock. While this documentation was generally acceptable,

it did not specifically indicate how the Schmitt Trigger

was fired; i.e., how to initiate the loading of the BPR

with the contents of the counter. With the assistance of

Mr. Dan Zambon, AFIT DEL Engineer, and a call to the local

DEC repesentative, it was learned that setting bit 9 of the

CSR simulates the firing of the Schmitt Trigger.

Operationally, then, every time the monitor is called, the

CSR is loaded with a value which sets bit 9, in turn firing

the trigger and loading the BPR with the clock value.

RECOMMENDATIONS

The recommendations for follow-on effort to this

thesis are as follows:

1. Discover a means of overcoming the LSI-11/2 memory

limitation problem which disallows the execution of complex

queries; once this dilemma has been corrected, monitor the

execution of the optimization logic in accordance with the

requirements set forth on this thesis to determine the

affect these modules have on overall system performance.

2. cdomplete the design, coding, and implementation of

the RUN module to incorporate the Coordinating Operator

Constructor techniques presented in the Smith &Chang paper

(Ref. 18); monitor these techniques as part of the overall

84

optimization logic.

3. Investigate the possibility of extending the model

of the optimization modules to a model of the entire Roth

system, at least at an an overview level of detail to

provide a more concrete view of the interaction of the

data manipulation language.

4. Further develop the baseline model presented in

this thesis by carrying it to the fifth or sixth level of

detail; introduce parametric and structural changes to the

model based on experimental results, in turn leading to

more productive enhancements of the optimization techniques

employed.

FINAL COMMENT

Relational databases provide the wave of the future

in the sea of management information systeits. Additionally,

as hardware miniaturization becomes more prevelent in the

area of data processing, increasing emphasis is being

placed on the improved capabilities of microprocessors.

Accordingly, more and more work is going to be performed in

an attempt to implement relational databases on

microprocessing systems. Two areas of difficulty are going

to surface repeatedly during this implementation:

optimization of retrieval time and efficient use of storage

resources. Hopefully, through efforts such as this one,

microprocessor resident relational databases will become

practical and serve the needs of a variety of users.

85

, 1 '
. .'

-
. . . ., -..- ... '>

BIBLIOGRAPHY

1. Date, C.J., An Introduction to Database Systems
(Second Edition). Reading: Addison-Wesley, 1977.

2. Ferrari, Domenico, Computer Systems Performance
Evaluation. Englewood Cliffs: Prentiss-Hall, Inc., 1978.

3. Fonden, Robert W. Design and Implementation of a
Backend Multiple- Processor Relational Database Computer
System, AFIT Thesis, 1981.

4. Haerder, Theo "A Generalized Access Path
Structure," ACM Transactions on Database Systems,3 (3):
285-298 (September 1978).

5. Hall, P A V "Optimisation of a Single Relational
Expression in a Relational Data Base System," IBM Journal
of Research and Development, 20 (3) : 244-257 (1976)

6. Hawthorn, Paula, & Stonebraker, Michael,
"Performance Analysis of a Relational Database Management
System," ACM, 1979.

7. Kambayashi, Yahiko, Database, A Bibliography. USA:
Computer Science Press, 1982.

8. Mau, James D. Implementation of a Pedagogical
Relational Database System on the LSI-11 Microcomputer,
AFIT Thesis, 1981.

9. Microcomputers and Memories. Digital Equipment
Corporation Handbook. Digital Products Marketing, 1981.

10. Microcomputer Interfaces Handbook. Digital
Equipment Corporation Handbook. Digital Products Marketing,
1981.

11. Morris, Michael F. & Roth, Paul F., Computer
Performance Evaluation for Effective Analysis. New York:
Van Nostrand Reinhold Co., 1982.

12. Oliver, N.N., & Joyce, John, "Performance Monitor
for a Relational Information System," Proceedings of the
Annual Conference of the ACM, Houston (October, 1976).

13. Pritsker, A. A. B. & Pegden, C. D., Introduction
to Simulation and SLAM. West Lafayette: Systems Publishing
Corporation, 1979.

86

14. Rodgers, Linda, The Continued Design and Implementation of
a Relational Database System, Masters Thesis, Air Force
Institute of Technology, Dayton, Ohio, 1982.

15. Rosenberg, Arnold L., and Snyder, Lawrence,
"Time- and Space- Optimality in B-Trees," ACM Transactions
on Database Systems, 6 (1): 174-193 (March 1981).

16. Ross, Douglas T., "Structured Analysis(SA): A
Language for Communicating Ideas," IEEE Transactions on
Software Engineering, SE-3 (1): 16-34 (January 1977).

17. Roth, Mark A., The Design and Implementation of a
Pedagogical Relational Database System, Masters Thesis, Air
Force Institute of Technology, Dayton, Ohio, 1979.

18. Smith, John Miles, and Chang, Philip Yen-Tang,
"Optimizing the Performance of a Relational Algebra
Database Interface," Communications of the ACM, 18 (10):
568-579 (October 1975).

19. UCSD (Mini-Micro Computer) PASCAL, Version II.0,
Institute for Information Systems, University of
California, San Diego (March 1979). (Available through
AFIT/ENE).

20. Yao, S. Binq, "Optimization of Query Evaluation
Algorithms," ACM Transactions on Database Systems, 4 (2):
133-155 (June, 1979).

87

*ei

-24 99 [HE PERORMANC ME HREMEN OF A RELA ONA D ATAAE 2/2
SSEM USNGMONTOH .UJ AIR FORCE I FTC

WRIGHT-A HERON AB OTSHOOL 0F ENGI L SNYDR

EEEEEEEhEE

11-

II1.25 11.4 1.

4 MICROCOPY RESOLUTION TEST CHART
MA71ON4AL OURfEAU Of S1ANOARI)-193-A

APPENDIX A

ROTH OPTIMIZATION LOGIC MODEL -

SLAM NETWORK DIAGRAMS

This appendix is a collection of SLAM network

diagrams which depict the Roth database system at the

first and second levels of detail.

The first SLAM diagram serves as an overview of the

Roth optimization logic and is designed at detail LEVEL I.

At this level, an entity in the system represents an entire

relational algebra query. For this baseline model, five

queries are created by the CREATE node, each corresponding

to one of the benchmark queries appearing in Appendix B.

The creation of the queries begins at system time zero, and

the entities are created at an inter-creation time of 1

time unit. One time unit was nominally chosen as a

value for this parameter because the inter-arrival rate is

insignificant; after all entities are created, only one is

allowed to proceed through the logic at a time. After

creation, an entity first encounters an AWAIT node which

monitors the status of the SLAM RESOURCE Optimize. The

purpose of this technique is to preclude an entity from

processing through the optimization logic until the

preceeding entity has completed executing. This is done to

simulate the fact that the Roth logic processes a single

88

f ___ --

command file at a time. If the RESOURCE is free, the entity

seizes its services and proceeds. The simulated command

file encounters four successive activities, corresponding

to the four Roth optimization modules: TREE, SPLITUP,

OPTIMIZE, and RUN. After completing the RUN activity, the

entity frees the Optimize RESOURCE, in turn permitting

processing of the subsequent command file. Finally, the

entity terminates, simulating a response to the user.

89

E-HE

90

The LEVEL II representation in Appendix A presents

the model of the Roth optimization logic at the next level

of detail. LEVEL II actually consists of four individual

diagrams, each corresponding to one of the optimization

modules. Each diagram is related to the other three in that

as is the case with the logic represented, the result of

one optimization module becomes the input to the next.

The first LEVEL II diagram represents the TREE

optimization module. At the CREATE node, a set of n

entities, each representing a relational algebra command,

is created. Because TREE is the first of the four

optimization modules, creating this command file simulates

the input of a command file to the TREE procedure in the

actual system. The number of commands created depends upon

the size of the query being experimented with. Each entity

generated is then assigned an integer value which

corresponds to one of the eight possible relational algebra

command types used by the Roth database system. The integer

designations are:

1 - UNION

2 - DIFFERENCE

3 - INTERSECT

4 - PRODUCT

5 - SELECT

91

.. 7 w!. I ~ - - - - - . - -

6 - JOIN

7 - PROJECT

8 - DIVIDE

After the entity is assigned its type representation,

it passes through a SLAM service activity which simulates

the TOKEN procedure. In the actual system, TOKEN returns

the type name of the command being processed. At this

point, the entities are queued, allowing them to be

individually processed by the remainder of the TREE

procedure. The actual TREE processing is a call to one of

five sub-procedures: DUIP, SELECT, JOIN, PROJECT, or

DIVIDE. The specific call being made depends upon the type

of command being processed; i.e., the function name

returned by TOKEN. This processing capability is treated as

a resource in the model, with each entity in the queue

individually seizing control of processing and subsequently

freeing the resource when it has completed, in turn

permitting the next entity to process. The type of

processing chosen is based on the integer command type

representation acquired at the assign node. After

processing is completed, the entity increments a counter

kept in variable XX(ll) and either exits the model at

terminal node T or continues through GOON node GOSPLIT,

depending on whether it was the last entity createdi i.e.,

the last command in the query. When the last entity passes

through the GOON node, it represents a single network of

92

L 1iI7 '~'~ - -

operator trees created by procedure TREE which also serves

as input to the SPLITUP module.

I

I

1-4 -4 - C4

I-I

04:

.1o

*.1.

914

I

The second LEVEL II diagram represents the second

optimization module, SPLITUP. The model of SPLITUP

basically consists of five service activities, each

corresponding to one of the actual module's five

subprocedures. SPLITUP receives a single entity as input,

representing the network of shared operator trees provided

by TREE. The entity must first be assigned parameter values

repesenting characteristics of the network. Attribute 1

(A(1)) is assigned the current clocktime. A(2), represented

by m in the diagram, obtains the number of nodes in the

network. Finally, A(3) s set equal to the number of root

nodes in the network of shared trees.

The entity next passes through the activity

FINDHEADS, which in the actual system links the root nodes

of the network. The next activity encountered is LONGTREE.

In Roth's logic, LONGTREE sorts the input chain of root

nodes, placing the root of the tree with the greatest

number of shared subtrees first, and the root of the tree

with the least number of shared subtrees last. The next

simulated procedure is FIXFIELD, which initializes each

node's attribute field. The entity then encounters the

DIVORCE activity, which separates the shared subtrees from

each tree of the network. Finally, REVCHAIN is encountered.

REVCHAIN reverses the order of the root nodes to permit the

formerly shared subtrees to be executed before the results

of these operator trees are utilized. Following REVCHAIN

95

processing, the entity passes through a GOON node labeled

G, which splits the entity into a finite number of

entities, each representing an individual tree containing

no shared subtrees. These individual trees are then queued,

passing on to GOON node GOOPT, and in turn providing input

to the OPTIMIZE module.

96

U- ~

The third LEVEL II diagram represents the next

optimization module, OPTIMIZE. Like the TREE procedure,

OPTIMIZE can only process a single entity at a time. Like

SPLITUP, OPTIMIZE may be represented as a collection of

service activities, each corresponding to a sub-procedure

of OPTIMIZE itself.

As each entity enters OPTIMIZE, it must first obtain

RESOURCE PROCESS before it may proceed with execution. The

first activity encountered is COMBOOL. In the actual

system, COMBOOL is responsible for converting unique data

structures called "boolean subtrees" into single

operators. After COMBOOL processing, the entity enters

procedure SELDOWN, responsible for further optimizing

the parse tree by moving SELECT operators down the operator

tree. The SIMSEL activity then represents the logic which

is responsible for simplifying complex SELECT operator

boolean predicates. PROJDOWN then pushes PROJECT operators

down the tree. Finally, duplicate PROJECT operators are

eliminated by the ELIMDUPROJ algorithm.

After ELIMDUPROJ has been traversed, the entity frees

the PROCESS RESOURCE, permitting the subsequent tree to

begin execution. The entity then goes through GOON node

GORUN as input to module RUN.

98

0

PL(V

99

I
The final LEVEL II SLAM diagram depicts the RUN

module of the Roth database optimization logic. The model

shows that the single entity, representing the optimized

operator tree produced by OPTIMIZE, first flows through

activity INSUPS. The procedure INSUPS serves as a prelude

to the actual algorithm which links the operator nodes. The

entity then simulates processing by the activities UPTREE

and DOWNTREE, two submodules which actually perform the RUN

optimization algorithm. Finally, a procedure tentatively

called EXEC is simulated. EXEC is responsible for executing

the procedure calls created by DOWNTREE. Each time an

entity completes EXEC processing, SLAM variable XX(12) is

incremented. When the value of XX(12) reaches q, the number

of trees output by OPTIMIZE, a single entity exits the

system at terminal node TERM, representing the result of

the command file being returned to the user.

100

V-
4

4

C,~

10

Ma\

APPENDIX B

BENCHMARK QUERIES

OVERVIEW

In order to measure the effectiveness of the

optimization techniques employed by the Roth database

logic, a set of benchmark queries, along with a set of

test relations must be created. These queries and

relations should be designed specifically to verify the

Roth optimization techniques; i.e., to determine whether

the optimization modules are successfully satisfying their

objectives.

The scenario forming a basis for the benchmark

queries was chosen from a paper by P. A. V. Hall which

documents relational database research performed at the IBM

UK Scientific Centre at Peterlee, England (Ref. 5). The
AI

scenario deals with automating the functions of a library

using a relational database. The appropriate information

required to support this library is stored in eleven

specific relations, each of which is pictured in Table I.

QUERIES

4 The first benchmark command file is designed to

exercise the SPLITUP logic, and actually consists of three

queries which utilize shared subtrees.

102

(Qi) JOIN ACQ, LON WHERE ACQNO = ACQNO GIVING Ti

JOIN T1, BRW WHERE BRWNO =BRWNO GIVING T2

SELECT ALL FROM T2 WHERE PRICE > 10.00 GIVING T3

JOIN T3, STS WHERE STAT = STAT GIVING T4

SELECT ALL FROM T4 WHERE (STAT = A AND PRICE > 10.00)

GIVING T5

PROJECT T5 OVER TITL, PRICE, NUMB GIVING RESULT

JOIN ACQ, LON WHERE ACQNO = ACQNO GIVING TI

JOIN Ti, BRW WHERE BRWNO = BRWNO GIVING T2

PROJECT T2 OVER ACQNO GIVING RESULT

JOIN ACQ, LON WHERE ACQNO = ACQNO GIVING Ti

JOIN TI, BRW WHERE BRWNO = BRWNO GIVING T2

SELECT ALL FROM T2 WHERE PRICE > 10.00 GIVING T3

PROJECT T3 OVER ACQNO GIVING RESULT

Query 2 is designed to test the SELDOWN and PROJDOWN

algorithmr nd consists solely of SELECT and PROJECT

operators.

(Q2) PROJECT ACQ OVER ACQNO, AUTH, TITL, PUBLYEAR, PRICE

GIVING Ti

PROJECT TI OVER ACQNO, AUTH, TITL, PUBL, YEAR GIVING T2

SELECT ALL FROM T2 WHERE (PUBL = MCGRAW HILL) GIVING Si

PROJECT Si OVER ACQNO, AUTH, TITL, PUBL GIVING T3

103

......

PROJECT T3 OVER ACQNO, AUTH, TITL GIVING T4

PROJECT T4 OVER ACQNO, AUTH GIVING T5

SELECT ALL FROM T5 WHERE (ACQNO < 100) GIVING S2

PROJECT S2 OVER ACQNO GIVING RESULT

Query 3 also tests the SELDOWN and PROJDOWN

algorithms, this time by naturally placing the SELECT and

PROJECT operators at the bottom of the operator tree.

(03) SELECT ALL FROM ACQ WHERE (AUTH = HAWTHORNE) GIVING Ti

PROJECT Ti OVER ACQNO GIVING T2

JOIN T2, LON WHERE ACQNO = ACQNO GIVING T3

JOIN T3, BR; 9ERE BRWNO = BRWNO GIVING RESULT

Query 5 tests the COMBOOL algorithm employed by the

RUN module of the Roth logic. COMBOOL works on the

principle that improved efficiency can be obtained by

transforming "boolean subtrees" into single operators which

read storage-resident relations only once instead of

multiple times. Query 5, when directly implemented,

provides an operator tree identical to the one appearing in

the Roth thesis (Ref. 17, Figure 12).

(Q4) SELECT ALL FROM ACQ WHERE ACQNO < 200 GIVING Ti

SELECT ALL FROM ACQ WHERE ACQNO > 500 GIVING T2

104

.--J-0- ----- ~----- ----- -

i UNION TI, T2 GIVING T3

SELECT ALL FROM T3 WHERE AUTH = HAWTHORNE GIVING T4

SELECT ALL FROM ACQ WHERE (ACQNO < 50 AND ACONO > 650)

GIVING T5

INTERSECT T4, T5 GIVING RESULT

Within the EXECUTE procedure, which serves as a

driver during the optimization processing, a copy of the

optimized operator tree is printed to the terminal using

the PRINTTREE procedure. An interesting test of execution

time efficiency would be to measure Query 5 from beginning

of execution through completion of the RUN module, and

then, using the PRINTTREE output, to measure the same

processing interval using the optimized version of the same

query.

(05) UNION LON, LTD GIVING Ti

PROJECT HIST OVER ACQNO, BRWNO, DATOUT GIVING T2

INTERSECT Ti, T2 GIVING T3 DIFFERENCE T3, LON GIVING T4

PRODUCT T4, BRW GIVING T5

SELECT ALL FROM T5 WHERE BRWNO = BRWNO GIVING T6

PROJECT T6 OVER ACQNO, DATOUTBRNAM GIVING T7

JOIN T7, HIST WHERE ACQNO = ACQNO GIVING T8

PROJECT T8 OVER ACQNO, DATOUT, DATIN GIVING RESULT

105

RELATION COMPONENTS

1 2 3 4 5 6 7

ACQ ACQNO AUTH TITL PUBL YEAR PRICE CODE

NACQ ACQNO AUTH TITL PUBL YEAR PRICE CODE

LACQ ACQNO AUTH TITL PUBL YEAR PRICE CODE

PACQ ACQNO AUTH TITL PUBL YEAR PRICE CODE

DDC CODE SUBJ

BRW BRWNO BRWNAM ADD STAT

STS STAT NUMB PERD

LON ACQNO BRWINO DATOIJT

LTD ACQNO BRWNO DATOUT

RTD ACQNO DATIN

HIST ACQNO BRWNO DATOUT DATIN

Table I. Test Relations of the Library Data Base
14

I 106

APPENDIX C

CONSTRUCTING THE MONITOR SYSTEM

OVERVIEW

The Roth database system is written using the UCSD

PASCAL language. Because of its length, however, the

entire system could not be placed in a single source file.

As a result, the code had to be segmented using the UCSD

PASCAL segmentation feature. Each segment is individually

compiled with the compiled segments then pieced together

using the LIBRARIAN utility. Finally, the resulting

library is linked together using the system LINKER, with

the external assembly subroutine copied into the COMMON

Unit where it was declared. A description of this process

follows:

COMPILATION

Each segment, along with the COMMON Unit, must be

individually compiled. It is imperative that the compiler

directive (*$S+*) appear as the first line of code in each

segment to place the compiler in swapping mode, in turn

eliminating the danger of exceeding system resources. The

COMMON Unit must be compiled first, so that it may be

placed into the system library to be used during the

subsequent compilation of the remaining segments.

107

LIBRARIAN

As the name implies, the LIBRARIAN is a system

utility which is used to create a library. During the

creation of the monitor system, the LIBRARIAN is used in

two instances.

Once the COMMON unit has been compiled and placed in

its own file (COMMON.CODE), it must be added to the

existing system library so it is accessible during the

compilation of the remaining segments. Appendix A of the

Rodgers thesis (Ref. 19) outlines this procedure. After

the system library is modified to include the newly

compiled COMMON Unit, each remaining segment of Roth

source code must be recompiled and placed in its own .CODE

file.

BUILDING THE SYSTEM

After each segment has been recompiled using the new

system library, LIBRARIAN must once again be used to build

the segmented Roth system. For the purposes of this

example, it is assumed that a segmented system .CODE file,

called LIBRY.CODE, is already available, thus requiring

that the existing segments be replaced with the newly

compiled .CODE files. The sequence is as follows:

The user types an "X" at the system level.

108

! ~- - v

The system responds with:

EXECUTE WHAT CODE FILE --- >

The user enters "LIBRARY".

The system responds:

OUTPUT CODE FILE --

At the point, the user needs to enter the name of the

file which will contain the new library. For our example,

the user enters LIBRY.CODE.

The system then prompts:

LINK CODE FILE --- >

The user is now being requested to provide the name

of the existing library; i. e., the library which needs to

be modified. In our example, the link file is the same as

the output file, so the user enters LIBRY.CODE.

'~1 The system then presents a library map which

identifies what currently exists in each segment of the

link code file. A typical example of the existing Roth

system would appear as follows:

109

0- 0 4- 0 8- 0 12-INVENTOR 1888

1-DB 8140 5- 0 9- 0 13-EXECUTE 12848

2-PASCALIO 1824 6- 0 10-COMMON 936 14-TREE 9132

3-DECOPS 2092 7- 0 11-DEFINE 5382 15-RUN 8936

The user's task is to replace those segments existing

in the current file with the newly compiled segments which

were recompiled using the modified COMMON. Segments 2 and

3 of this example contain PASCAL library system segments

which were not compiled using COMMON. For this reason, the

first step is to merely copy these two segments into the

output code file. The system prompt is:

Segment # to link and <space>, N)ew file, Q)uit, A)bort

The user responds:

2 (space)

The system prompts:

Seg to link into?

The user responds:

2 (space)

110

II

A second library map now appears on the screen,

reflecting the fact that PASCALIO has been copied into the

output code file. The same procedure is repeated for

segment 3, DECOPS. Again the system prompts:

Segment # to link and <space>, N)ew file, Q)uit, A)bort

The user now responds:

N

The system prompts:

Link Code File?

The user is requested to enter the name of the file

from which the replacement segment is to be taken. In our

example, we are attempting to replace the existing segment

1, DB, with the revised segment which resides in file

MAIN.CODE on Logical Unit 4. Thus, the user enters:

#4:MAIN.CODE

The system again prompts:

Segment # to link and <space>, N)ew file, Q)uit, A)bort

111

1I~~

I
The user wishes to place the new code in segment 1,

so he responds:

I (space)

The system responds:

Seg to Link Into?

The user replies:

1 (space)

The library maps on the screen are now updated. The

map of the output file reflects that segment 1, DB, has

now been entered into the output code file. The system

prompt once again appears:

Segment # to link and <space>, N)ew file, Q)uit, A)bort

The user next needs to place the revised COMMON

segment into the output code file. The user responds:

N

The system prompts:

112

I
Link Code File?

Assuming that the revised COMMON file, called

COMMON.CODE, resides on Logical Unit 5, the user types:

#5:COMMON.CODE

The system then prompts:

Segment # to link'and <space>, N)ew, Q)uit, A)bort

The user replies:

10 (space)

The system prompts:

Seg to link into?

The user responds:

10 (space)

The library map displaying the output link file

reflects that COMMON is entered into segment 10 of the new

library.

This procedure is continued for segments 11 through

113

T

15. After replacing segment 15, the system once again

prompts:

Segment # to link and <space>, N)ew, Q)uit, A)bort

The user now enters:

Q

The system replies:

notice?

The user enters a carriage return.

The system has now been reconstructed using the

LIBRARIAN utility, and must now be processed through the

LINKER before being executed. A description of the

LIBRARIAN intrinsics may be found in Section 4.2 of the

UCSD PASCAL Version II.0 Manual (Ref. 19).

LINKER

The linker serves two functions during the creation

of the Roth executable system. First, it links the newly

constructed PASCAL library which consists of the segments

containing the Roth code. Second, it permits the assembly

file CLOCKREAD to be copied into the system so that it may

114

be used during execution. The result of the linking

process is the Roth database system executable .CODE file.

The sequence is as follows:

At the system level, the user enters "L* to execute

the Linker utility.

The system responds with:

Linking....

Linker[II.01

Host File?

The user is now requested to enter th- name of the

file which contains the Roth segmented code. Drawing from

the example used in the preceeding section, the user

enters:

#5:LIBRY

The system respons with:

Opening #5:LIBRY.CODE

Lib File?

The user is now requested to indicate if any library

115

files exist which need to be copied into the executable

system code file. In order to monitor the Roth system,

this technique is used to make the external assembly file

available for use. Assuming that the procedure CLOCKREAD

has been assembled and placed in file CLOCK.CODE on

Logical Unit 5, the user enters:

#5:CLOCK.CODE

The system responds:

Opening #5:CLOCK.CODE

Lib File?

The user enters a carriage return, indicating no more

library files exist. The system prompts:

Map Name?

If the user wants a link map, he may enter a file

name into which the map will be written. If the user

desires, he may enter "PRINTER:", in which case the map

will be written to the printer. If no map is requested,

the user enters a carriage return.

The system replies with the following response:

116

Reading DB

Reading COMMON

Reading PASCALIO

Reading DECOPS

Reading CLOCKREA

Output File?

The user is now requested to enter the name of the

file which will contain the executable code. In our

example, the user enters:

#5:OP.CODE

The system responds:

Linking COMMON #10

Copying Proc CLOCK

Linking DEFINE #11

Linking INVENTOR #12

Linking EXECUTE #13

Linking TREE #14

Linking RUN #15

Linking DB #1

The Linking function has now been completed. A

117

detailed description of the Linker utility appears in

Section 1.8 of the UCSD PASCAL Version II.0 Manual (Ref.

19).

The executable version of the Roth logic, including

the assembled copy of the external procedure CLOCKREAD now

resides in file OP.CODE.

118

! _____________________ - - - - - - - - - - - -

APPENDIX D

PROGRAM ANALYZE

DATE: 8 OCT 82
VERSION: 1

NAME: ANALYZE
MODULE NUM: N/A

FUNCTION: The function of this offline program is to
read the data contained in disk file
MONFIL.TEXT and convert it to total monitoring
time. The finalized output is then written to
disk file ANALFIL.TEXT.

INPUTS: None
OUTPUTS: None

GBL VAR USED: None
GBL VAR CHNGD: None
GBL TBL USED: None

GBL TBL CHNGD: None
FILES READ: Disk file MONFIL.TEXT

FILES WRITTEN: Disk file ANALFIL.TEXT
MODULES CALLED: None
CALLING MODULES: None

AUTHOR: Capt Gary L. Snyder
GCS - 82D

- ---

PROGRAM ANALYZE;
CONST

ANALSIZE = 20;
OVHEAD = 4.200;
OFLOHEAD = 2.275E-2;
HALFBUFF = 32767;

TYPE
ANALRCRD = RECORD

CLCKTIME : INTEGER;
OVFLCOUNT : INTEGER;
FNCTION : INTEGER;

END;
ARRA = ARRAY[I..ANALSIZE] OF ANALRCRD;

VAR
CNTINCRARRACNT : INTEGER;
M,A : INTERACTIVE;

119

ANALARRA :ARRA;
FINALVAL :INTEGER[2OI;
TOTOVHED :REAL;
OVFLTOT :INTEGER;

BEGIN

READ EXISTING DATA OFF FILE MONFIL.TEXT
AND CREATE DATA ARRAY ANALARRA

RESET(M,15:MONFIL.TEXT');
WRITELN(' PROGRAM ANALYZE');
WRITELN('READING MONFIL.TEXT FROM DISKETTE');
CNT := 0;

FOR INCR := 1 TO 4 DO
BEGIN
READLN(M);
WRITELN('*');
END;

WHILE NOT EOF(M) DO
BEGIN
CNT := CNT + 1;
READLN (M,ANALARRA ICNT . FNCTION,

ANALARRA [CNT] .CLCKTIME,
ANALARRA[CNT] .OVFLCOUNT);

WRITELN('*');
END;

DERIVE FINAL MONITOR TIME
AND PLACE IN VARIABLE FINALVAL

REWRITE(A,'#5:ANALFIL.TEXT');
WRITELN('WRITING TO FILE ANALFIL.TEXT');
WRITELN(A, 'ROTH DATABASE MONITOR RESULTS');
WRITELN(A);
FOR 114CR := 2 TO CNT-1 DO

BEGIN
OVFLTOT :ANALARRA[INCR].OVFLCOUNT DIV 2;
TOTOVHED :OVHEAD + (OVFLTOT * OFLOHEAD);
FINALVAL :HALFBUFF;
FINALVAL :-ANALARRA[INCRI .OVFLCOUNT * FINALVAL;
FINALVAL :=FINALVAL + ANALARRA[INCR].CLCKTIME;
FINALVAL :FINALVAL - ROUND(TOTOVHED);
WRITELN (A,' TOTAL EXECUTION TIME OF FUNCTION

ANALARRA[INCR].FNCTIONti IS ',

120

FINALVAL,' MILLISECONDS');
WRITELN(1*1);

END;
CLOSE (A,LOCK);
END. (*ANALYZE*)

121

APPENDIX E

PAPER

THE PERFORMANCE MEASUREMENT OF A

RELATIONAL DATABASE SYSTEM

USING MONITORING AND MODELING TECHNIQUES

Gary L. Snyder

Capt, USAF

Air Force Institute

of

Technology

ABSTRACT

An investigation was conducted intended to uncover a

productive means of measuring the effectiveness of a

collection of untested relational algebra query

optimization techniques integrated within an existing

microprocessor-resident relational database.

As a result of this research, two methods of

performance measurement were proposed. A software monitor

was designed, coded, and tested specifically to determine

if the employed optimization methods actually decrease the

122

'l

amount of processing time required to execute a given

query. Additionally, a baseline simulation model was

designed and presented as an alternative means of analyzing

the performance of this optimization logic.

INTRODUCTION

In the mid-1970's a new kind of management

information system was devised based on relational

mathematics appropriately called the "relational database".

While this type of database is often heralded as the

information system of the future, it has also been

criticized as being slow and inefficient.

In 1979, an Air Force Lieutenant named Mark Roth set

out to design, code, and implement a pedagogical relational

database on a commercially available microcomputer. Roth

placed emphasis on the data handling efficiency of his data

manipulation language by employing two data performance

techniques. The first technique, inspired by Theo Haerder

(Ref. 4), relates tuples of one relation to tuples of

another yielding ordering and associative access by

attributes to provide efficient updates.

The second technique, inspired by an article by Dr.

John Miles Smith and Philip Yen-Tang Chang (Ref. 18), may

be referred to as an "automatic query optimizer interface"

which logically resides between a user's set of query

commands and the data residing in the system. This

optimization logic modifies any set of commands such that

123

no matter how inefficiently the original query was

constructed, it would be executed using the least amount of

processing time possible.

Research indicates that the Roth system is the first

attempt to operationally incorporate these query

optimization techniques within an actual relational

database. The potential benefits and untested status of

this automatic programmer suggest the purpose of this

paper: investigate techniques to measure the execution time

of complex relational algebra queries in an attempt to

verify the correctness and merit of the optimization

methods utilized.

STATEMENT OF PROBLEM

The purpose of this paper is to address performance

measurement techniques applicable to database management

systems and propose practical methods which will permit the

performance analysis of the Roth relational database

optimization modules. The Roth system is written using the

UCSD PASCAL programming language and resides on the LSI-

11/2 microcomputer.

OVERVIEW OF THE OPTIMIZATION LOGIC

The Roth database was designed to achieve as near

optimal behavior as possible by emphasizing query

optimization at the conceptual level. It was felt that

relational database systems provide users with tabular

124

views of data and consequently highly inefficient queries

are often created. The burden of efficiency should be

transferred from the user to the automatic optimization

interface.

The interface logic attempts to optimize a given

command file in two ways. First, an operator parse tree is

built with each node corresponding to one of the relational

algebra commands in the file. The tree is then rearranged

with the intent of decreasing the time required to perform

the subsequent retrieval. Second, this partially optimized

tree is analyzed in terms of temporary relations to be

created. The tuples of these relations are then preordered

to enhance any searching required to process the data.

The Roth optimization interface appears in the

EXECUTE module of the overall data manipulation language.

The interface itself consists of four PASCAL procedures

designed modularly using a top-down structured approach.

The TREE procedure creates the operator tree and performs

syntax checking. SPLITUP then transforms this single

operator tree into a network of non-shared subtrees.

OPTIM4IZE then exercises algorithms designed to manipulate

the tree to provide a more optimally constructed structure.

Finally, RUN orders the temporary relations created and

performs the actual retrieval. A comparison of these

procedures to the design proposed in the Smith & Chang

paper (Ref. 18) points out the similarity of the two

suggested automatic interfaces.

125

REQUIREMENTS

Because the goal of this research is to address

viable means of database performance analysis, specific

measurement requirements must next be discussed. Three

measurement procedures have been identified to provide the

information necessary to make an assessment of the

optimization techniques using a set of predefined benchmark

queries designed to test the automatic interface. These

procedures are:

1. Measure the execution time required to process a

query using the existing logic, then measure the time

required to process the same query bypassing the SPLITUP

and OPTIMIZE modules as well as that portion of the RUN

module responsible for sort ordering.

2. If procedure 1 indicates that optimization was

counter-productive for a given query, measure the execution

times of the individual optimization procedures searching

for specific processing bottlenecks.

3. The Coordinating Operator Constructor employed by

the RUN module implements each node of the existing

operator tree using a set of basic procedures which

provides optimal coordination of intermediate

relations(Ref. 17, p. 70). These procedures are heuristic

and untested in nature. A third requirement, then, is to

measure the time required to process the RUN module while

126

methodically altering the techniques used to sort the

relations and choose various operator implementations.

Software monitoring and simulation modeling were

determined to be two credible means of measuring the

efficiency of the database language. Monitoring has the

advantage of being easy to interpret and empirically

accurate, but modeling is more flexible and may be applied

to non-operational code.

PERFORMANCE MONITOR
The Roth database system uses the UCSD PASCAL

segmentation feature, which permits the compilation of

large source files by breaking these files into smaller

sectors. The code and data associated with these sectors

(called Segment Procedures) are memory resident only while

there is an active invocation of that procedure.

Additionally, one of these segments, called COMMON,

contains all global variables and utility procedures used

by the system.

In order to monitor the optimization modules, three

modifications must be made to the existing system. First, a

procedure must be written capable of reading some type of

clock in order to maintain the amount of time expired

during testing. Second, software "hooks" must be inserted

into the system to perform measurements commensurate with

127

*w -. . : " - '
"

.. M

the established requirements. Third, interface logic must

be established providing proper communications between the

clock reading procedure and the PASCAL host.

The real-time clock provided with the LSI-11/2 is the

KWIll-A. This programmable clock/counter features:

1. 16 bit resolution

2. external input capability

3. four programmable modes

The clock uses two system registers which permit the

user to control its operations and monitor its activities.

The procedure used to manipulate the real-time clock

is written at the assembly language level and is external

to the PASCAL host. Initiation of this routine forces an

interrupt which resets the clock immediately after loading

a register with its contents.

Calling the monitor from the host logic is a

straightforward task. Because the assembly procedure is set

up as a UCSD PASCAL external procedure, it may be called

just like any other PASCAL procedure. An individual call is

identified by passing a unique integer parameter which

subsequently gets stored along with the clock value

associated with that call.

The remaining task in the development of the monitor

is the establishment of a software interface between the

external assembly procedure and the "hooks" in the host

128

logic. This interface resides in the COMMON unit of the

segmented code and consists of a call to the external

subroutine, thus providing a "stepping stone" from host to

monitor. This process is necessary, because an external

assembly language procedure may only be called from the

segment which declares it, in this case the COMMON Unit.

MODELING THE OPTIMIZATION LOGIC

While monitoring the performance of the Roth

optimization modules is straightforward, it does carry with

it one notable drawback - the code being monitored must be

operational. It is not feasible that software hooks be

placed in code that does not run. This is a significant

issue when addressing the Roth database code because much

of the RUN module has not yet been designed and due to

resource constraints complex queries can not yet be

processed. This limitation to monitoring makes evident one

of the advantages to an alternate means of performance

measurement. Simulation modeling of performance can

evaluate design alone and does not require the existence of

operational code.

The optimization modules of the Roth logic could be

modeled using a high order simulation language in order to

provide insight into the merit of their execution. As with

any modeling effort, the process may be broken into six

logical steps. The task of modeling the Roth query

optimization logic may be addressed in terms of these six

129

-

- ,

steps:

1. PURPOSE. The purpose of a model of the Roth

optimization logic is to provide an accurate representation

of data flow beginning with the initial execution of a

command file through the completion of the execution of the

RUN module. Each entity flowing through the system

represents a relational algebra command, a multi-command

query, an operator tree, or a network of trees depending on

the specific application and location within the system,

with attributes assigned to these entities characterizing

their complexity, type, and anomalies. By modifying these

parameters along with the structure of the network,

potential logic bottlenecks and areas requiring improvement

can be identified.

2. SYSTEM ENVIRONMENT. One of the keys to a

successful, meaningful model is is clearly defining exactly

what needs to be represented. A model of the Roth

optimization logic is specifically confined to the four

PASCAL procedures TREE, SPLITUP, OPTIMIZE, and RUN. It is

noteworthy that the top-down, structured design of the

database permits an unambiguous interpretation of model

boundaries.

3. LEVELS OF MODELING DETAIL. Just as code is

designed in a top-down manner, so should the levels of

detail of the Roth model. Accordingly, the first

level of detail provides a representation which is an

130

overview of the entire optimization interface. The second

level model is an expansion of this overview. Models could

subsequently provide detail down to the fifth or sixth

level, in turn offering great insight into the performance

of the optimization techniques.

4. SYSTEM PERFORMANCE MEASURES. The next step in the

modeling process is the establishment of system performance

parameters; i.e., what values should be used to accurately

portray the Roth system processing times, what

modifications should be made to these parameters to

correctly reflect different query operating

characteristics, and what statistics should be used to

evaluate the outcome of these modifications?

5. DEFINE ALTERNATIVES, EXPERIMENT, AND IMPLEMENT.

The final two steps in the modeling process are to analyze

the results of the simulation effort and attempt to detect

possible weaknesses in the optimization logic which, if

corrected, could further decrease the amount of execution

required to perform a given user query. Having uncovered

these potential deficiencies in the system, either

parametric or structural changes to the model can be made,

and the model can be executed again, revealing if these

revisions are beneficial. Based on the observations

provided by the modifications to the model, permanent

design and implementation changes can be made to the Roth

system which will improve the processing efficiency of the

data retrieval function.

131

To date, simulation models of the-Roth database

optimization logic have been designed through the second

level of detail using the Simulation Language for

Alternative Modeling (SLAM).

SUMMARY

The objective of this paper was to present a

practical method of measuring the efficiency of a set of

relational algebra query optimization techniques integrated

within the data manipulation language of a pedagogical

relational database. Research indicated that not one? but

two methods could be used to perform this measurement.

Monitoring the logic would clearly display the amount of

time required by individual modules to process a set of

queries designed to test the system's capabilities. As an

alternative to monitoring, modeling the system would

provide the capability of evaluating performance even

before system implementation.

A performance monitor was developed using a

combination of UCSD PASCAL and assembly level programming

designed to measure the execution time of the optimization

modules in question. It is noteworthy that use of this

software tool is equally applicable to any UCSD PASCAL

program implemented on the LSI-11/2 Microcomputer. A model

of this logic was also initiated, using the SLAM simulation

language. It was determined that effective modeling of the

system should be approached in a hierarchical manner,

132

beginning with a LEVEL I overview of the modules to be

simulated. Subsequent models could then be developed, each

with increased detail which would eventually lead to an

experimental indication of the merit of the optimization

techniques.

133

VITA

Gary L. Snyder was born September 15, 1948 in
Hershey, Pennsylvania. He attended MS Hershey Jr./Sr. High
School, graduating June 1966. He then attended the
University of Arizona, graduating in February 1971 with a
Bachelor of Science Degree in Secondary Education /
Mathematics. He enlisted in the United States Air Force in
April 1971 and subsequently received his commission in
November 1974.

His first commissioned tour took place at the Air
Force Communications Computer Programming Center, Tinker
AFB, Oklahoma, where he participated in the AFAMPE data
communications office. He then became a member of Det 1,
AFCC/1815 Test Squadron, Ft. Huachuca, Az., where he
took part in the testing of prototype tactical
comunications equipment. Capt. Snyder was admitted to the
Air Force Institute of Technology in June 1981.

Permanent Address: 165 Governor Road
Hershey, Pa. 17033

<I

SECURITY CLAS$*Oi'.ATON OF TNIN D4E (Who, /)ta Ented)

REPORT DOCUMENTATION PAGE BEFRD C T OR
I. REPORT UMOER " 2 GOVT ACC'SSION NO. 3. PEC"Io"

0
F1PTCATALOG NUMBER

AFIT/GCS/EE/82D-33 AD ", , I
4. TITLE (and Subtitle) S. YE rF EPCIVrT a PERIOD COVERED

T1IE PERFOMANCE MEASUREMENT OF A MS Thesis
RELATIONAL DATABASE SYSTE1 USING
mONITORINC AND MODELING TECHNIQUES s. PERFORMING ORO. REPORT NUMBER

7. AUTNoR(s) It&. CONI RACT OR GRANT NUMBER(a)

Gary L. Snyder
Caps USAF

S. PER.ORMING ORGANIZATION NAME AND AODRESS to PPOGV i--LEMENT PROJECT. TASK

AkPa A WORK UNIT NUMBERS

Air Force Institute of Technology (AFIT-EN)
Wright-Patterson AFB, Ohio 45433

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

DEMI E 1982
IS. NUMBER OF PAGES

14. MONITORING AGENCY NAME & ADORESS(i dllferet from Controlling Office) IS. SECURITY CLASS. (of thle report)

UNCLASSIFIED
III. DECLASSIFICATION/DOWNGRAOING

SCH EDU LE

14 IS. OISTRIBUTION STATEMENT (of this Report) ""

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstrect entered in Block 20. It different from Report)

I. SUPPL EMENTARY NOTES a w .AW A M IM11

Approved for public release; IAW AFR 190-17 b.-eohvdPInoa
]e I eecit€ and Proje ssl as D l opisol

Relational Algebra Query Optimization
Software Monitor
Simulation model

20. ABSTRACT (Coni,inue an re.erse ide If necesary and Identify by block nh.br)

An investigation was conducted to provide a productive means of measuring
the effectiveness of a collection of untested relational algebra query
optimization techniques which are integrated within an existing microprocessor
resident relational database.

•V As a result of this research, two methods of performance measurement were

proposed. A software monitor was designed, coded, and tested specifically to

DD, jAR 1473 EoITlON oF I Nov6 is OSSOLTE
SECURITY CLASSIFICATION OF THIS PAGE (When Do& at#

* SZCURITY CLASSIFICATION OF THIS PAGE(Whenm Date Mntemd)

-2)determine if the employed optimization methods actually decrease the amount
* __ cf-fprocessing time required to execute a given query. Additionally, a

baseline simulation model was destgned and presented as an alternative
means of analyzing the performance of this optimization logic.

;CURT jLSIIAINO HS A2fe aa"*

